

Solenoid Valves

for application in:

- AUTOMATION
- HIGH TEMPERATURE STEAM
- HEATING

Cat.: GP/GB May 2002

Index for identification of the type/series of valve required

Table for selecting solenoid valves based on fitting size, porting, function

The horizontal rows indicate the porting and the function of the solenoid valve series required. The vertical columns indicate the size of the fittings for the series of solenoid valves included in the table. The codes in the table identify the series (one or more) of valves with the required features in addition to the colour background as indicated on the right-hand page for their use.

Column indicating the operation of the various series of solenoid valves			Fitting (G ["] or Rp,	, R where s	pecified		
Porting Po	est. osit.	Control / Operation / Fittings	1/8	1/4	3/8	1/2	3/4	1
2/2 N.	.C.	Direct operated	131.4	131.4				
			146	146				
			174	174				
				126				
			140.2					
			161.4	161.4				
			131					
			131.4G	131.4G				
			140	140				
					153	153		
2/2 N.		Direct operated, 90' fittings	158					
2/2 N.		Direct operated, reversed seat	120.4	120.4				
2/2 N.	.0.	Direct operated.		136				
				151				
2/2 N.	.C.	Diaphragm pilot operated,			133	133	133	133
		lateral pilot			168.1	168.1	168.1	168.1
					173	173		
					133H	133H	133H	133H
2/2 N.	.C.	Diaphragm pilot operated,			156.2	156.2	156.2	156.2
	_	central pilot			135	135	135	
2/2 N.		Combined operation, hung diaphragm			123	123	123	123
2/2 N.	.0.	Diaphr. pilot operated, lateral pilot			143	143	143	143
2/2 NI	C		144	1.4.1	169.1	169.1	169.1	169.1
3/2 N.	. C .	Direct operated	141 179	141				
3/2 N.	C	Direct operated flanged had:	179					
		Direct operated, flanged body	120	120				
3/2 Un	nivers.	Direct operated	139	139				

Once the series required has been identified:

- 1: look up on pg. 3 the catalogue page corresponding to the series of solenoid valves;
- 2: go to the contents page of the section corresponding to the type of application (the second in the section): the section is indicated by the background colour of the box where the required series is identified. In this section you will find all the specific technical information on the double page of the series required.

Index for identification of the type/series of valve required

Table for selecting solenoid valves based on fitting size, porting, function

The background colours of the boxes correspond to the application section of the solenoid valve series indicated in the table: For convenience, the solenoid valves which are:

normally open **N.O.** have a series code in the table printed in

normally closed **N. C.** have a series code in the table printed in of another type - **UNIVERSAL/BYPASS** have a series code in the table printed in

	Fitting (G ["] or Rp	, R where s	pecified		Column indicating the operation of the various series of solenoid valves			
1 1/4	1 1/2	2	2 1/2	3	FLANGED BODY	Porting Rest. Posit.	Control / Operation / Fittings		
						2/2 N.C.	Direct operated		
						2/2 N.C.	Direct operated, 90' fittings		
						2/2 N.O.	Direct operated, reversed seat		
						2/2 N.O.	Direct operated.		
133	133	133	133	133		2/2 N.C.	Diaphragm pilot operated, lateral pilot		
133H	133H	133H							
						2/2 N.C.	Diaphragm pilot operated, central pilot		
						2/2 N.C.	Combined operation, hung diaphragm		
143	143	143				2/2 N.O.	Diaphr. pilot operated, lateral pilot		
						3/2 N.C.	Direct operated		
					128	3/2 N.C.	Direct operated, flanged body		
						3/2 Univers.	Direct operated		

General contents

TECHNICAL INFORMATION	pages
Selection and Nomenclature	1-2
General information and operating principles	7
General features and identification of solenoid valves	8-9
Basic components of solenoid valves and technical terminology	10-11
Construction materials	12
Conversion tables	13-15
Sectional drawings of solenoid valve types	16-19
Sizing solenoid valves	20-21
Diagrams for liquids, gases, dry saturated steam	22-24
Date coding	25
Media compatibility table	26-27
Coils	28-34
Solenoid valve accessories	35

SOLENOID VALVES FOR AUTOMATION

Series	123	40-41
Series	131.4	42-43
Series	133	44-45
Series	133 CMV	46-47
Series	136	48-49
Series	139	50-51
Series	141	52-53
Series	143	54-55
Series	146	56-57
Series	151	58-59
Series	168.1	60-61
Series	169.1	62-63
Series	173	64-65
Series	174	66-67
Series	179	68-69

SOLENOID VALVES FOR STEAM AND HIGH TEMPERATURES

Series	126	
Series	128	74-75
Series	133H	76-77
Series	135	78-79
Series	140.2	80-81
Series	156.2	82-83
Series	158	84-85
Series	161.4	86-87
		88-89

SOLEN	OID VALVES FOR HEATING	
Series	120.4	94-95
Series	131	96-97
Series	131.4G	98-99
Series	140	100-101
Series	153	102-103

Technical information index

	pages
Selection and Nomenclature	1-2
General information and operating principles	7
General features and identification of solenoid valves	8-9
Basic components of solenoid valves	10
Technical terminology	11
Construction materials	12
Conversion tables	13-15
Sectional drawings of solenoid valve types	16-19
Sizing solenoid valves	20-21
Diagrams for liquids, gases, dry saturated steam	22-24
Date coding	25
Media compatibility table	26-27
Coils	28-34
Solenoid valve accessories	35

Contents

Technical Information

General information and operating principles

General information

Solenoid valves may be defined as devices for interrupting or diverting the flow of fluids or gases in pipework.

They operate by opening or closing the orifice directly or by pilot operation by a solenoid operator (or electromagnet / coil).

The solenoid valve is a combination of three basic components:

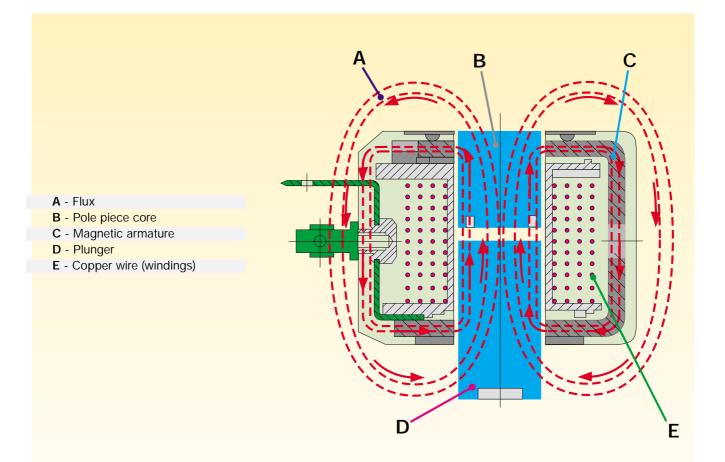
Operating principles

The term "solenoid" does not refer to the valve itself, but to the operator and coil mounted on the moveable valve, also known as "pilot" or "magnetic actuator".

The term "solenoid" dirives from the Greek "solen" which means "channel".

The coil in fact "channels" a strong magnetic force in the the windings when the coil is energised, i.e. when electric current flows through it.

The coil consists of capillary copper wire wound on a support reel. When electric current is fed into the coil, magnetic flow lines are generated, which are stongest in the centre of the coil.


- **1** Electromagnet consisting of a solenoid (windings) and a magnetic yoke (or magnetic armature).
- **2** Moveable plunger (which, in some cases, directly opens or closes the valve).
- **3** Valve-body with an orifice, opened or closed by plunger or diaphragm to enable or prevent flow of the medium.

This magnetic flow raises the moveable plunger in the coil until it brings it into contact with the pole piece.

The valve body has an orifice through which the liquid or gas flows when the valve is open.

The moveable plunger has an integral seat which, when the solenoid coil is energised, moves off the valve (direct operated) orifice or diaphragm (pilot operated) orifice opening the valve.

When the coil is de-energised, a return spring repositions the plunger in the original closing position on the valve or diaphragm orifice, thus cutting off the flow of the fluid.

General features - Types of solenoid valves

General features

This section describes the operation of the solenoid valves, versions and types available, selecton tables and graphs, basic components, common technical terminology, conversion tables for solenoid valves in various units of measurement.

Principles of operation

In compact solenoid valves, the solenoid coil is mounted directly on the enclosing tube, sealed and integral with the valve body. The moveable plunger is free to move in the enclosing tube and is normally held in position by a thrust (or return) spring.

When the solenoid coil is energised, the plunger is attracted by the effect of the magnetic field and the seat, integral with the plunger, opens (or closes) the valve or the valve pilot.

Solenoid valves/versions available

a) direct acting

The moveable plunger with integral seat, by the action of the solenoid coil, opens or closes the orifice depending on whether current is supplied to the solenoid (energised or de-energised solenoid) or not.

In this direct operated design the coil itself supplies all the energy required to move the plunger and seat. Operation does not therefore depend on the pressure of the fluid or the flow rate.

The solenoid valve can operate from 0 pressure difference up to the value indicated in the tables.

b) Pilot operated

(servocontrolled or diaphragm pilot operated):

These solenoid valves are fitted with a pilot seat, controlled by the solenoid coil and a diaphragm which closes the main orifice of the valve, using the fluid pressure for operation. When the solenoid is energised, the core opens the pilot seat to allow the pressure on the upper part of the diaphragm to flow to the outlet of the valve body. Thus a pressure imbalance is created on the diaphragm, raising it and fully opening the valve orifice.

When the solenoid is de-energised, the pilot seat closes and the pressure, passing through an "equaliser" hole, is restored above the diaphragm, thus closing the valve.

Operation depends on a pressure difference between upstream and downstream of the solenoid valve which equals the force required for moving the diaphragm or keeping it tight on the main orifice. This value, indicated in the tables, is known as "minimum operating pressure".

c) Combined operation

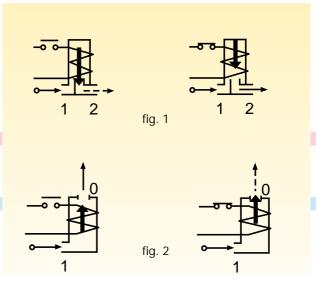
In this design the moveable plunger is physically connected to the diaphragm in which the pilot orifice is located. The attraction of the plunger thus opens the pilot orifice and the pressure lifts the diaphragm which is further moved by the plunger during its opening stroke (assisted lift). Thus by direct operation (plunger) and pilot operation (diaphragm) it is possible to achieve full flow even at low pressures and normal operation (and shut off) even at 0 pressure.

Types of solenoid valves

According to their application, the following types are available:

a) 2-way solenoid valves (2 positions):

they have two ports (one inlet and one outlet) and an orifice passage and are divided into:

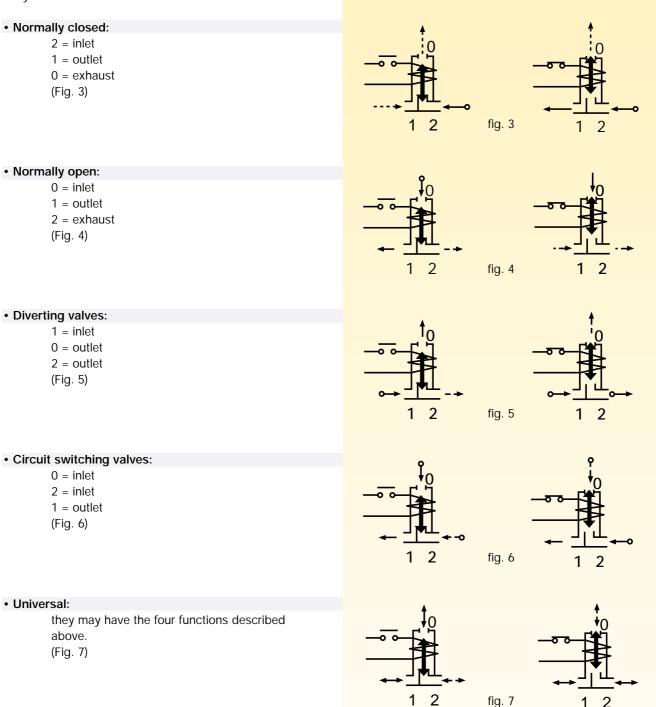

Normally closed:

they open

when the electromagnet or coil is energised (Fig. 1).

Normally open:

they close when the electromagnet or coil is energised (Fig. 2).



Classification of the solenoid valves contd.

Types of solenoid valves

b) 3-way solenoid valves (2 positions):

they have three ports and two orifice passages, one always open, the other always closed. They are divided into:

Response times:

They depend on the following factors: type of current (a.c. - d.c.), fluid, viscosity, type of operation, size of the solenoid valve.

For the direct acting type (2 or 3 way) and small diameters up to approx. 3 mm, orifice response time may be around tens of milliseconds.

1 2

Basic components of solenoid valves

Basic components of solenoid valves

Valve body:

main part of the solenoid valve with the ports, seats and orifice passages.

In almost all Parker-Scem products the bodies are made of brass stampings, while other materials are used in some special versions.

Enclosing tube assembly:

cylinder, normally in stainless steel, hermetically sealed and closed at one end.

It forms the housing and guide for the moveable plunger which is moved magnetically. The solenoid coil is fitted on the exterior of the enclosing tube.

It consists of:

•Pole piece:

Acts as a stop for the moveable plunger (=MP) and it is used to shield the magnetic flow. (Usually made of magnetic stainless steel).

Phase displacement (or shading) ring:

Normally made of copper, it is inserted on the surface of the pole piece to prevent a/c hum.

•Enclosing tube:

Normally made of stainless steel, it is used as a guide for the moveable plunger (=MP). It is normally assembled with the pole piece and the bonnet.

•Bonnet:

A threaded nut or square flange which secures the magnetic operator assembly to the valve body.

Moveable plunger:

Made of stainless steel, magnetic, it is actuated by the solenoid and slides inside the tube.

Plunger spring (or return spring):

Used to hold the MP in position and to return it into position after the action of the solenoid.

Seat seal (or pad):

Normally mounted on the MP, it is used to close the orifice of the valve or pilot.

Diaphragm:

In servocontrolled solenoid valves it acts as a servocontrol which, actuated by means of an solenoid pilot and by pressure, opens or closes the main orifice in the valve body.

Support Plate:

A perforated disc located in the valve body to support the diaphragm

Electromagnet (or solenoid coil):

Electrical part consisting of a copper windings (solenoid) which, with a magnetic yoke (armature), when electric current flows through it, generates a magnetic flux attracting the plunger.

For technical details, consult the specific section on Electromagnets.

N.B.

On request for various pilots, the electromagnet, enclosing tube and MP (with seal disc and spring) can be supplied separately as a MAGNETIC OPERATOR.

Technical terminology used in the catalogue

Technical terminology for using the tables

The basic technical features

of each solenoid valve model are indicated in the tables with the following headings:

Fittings (ports):

according to the application of the solenoid valves fittings may be:

- threaded in inches (G);

- male SAE threaded with card;

- solder;

- special where indicated (see solenoid valve drawing).

Passage (ND):

main orifice diameter (orifice) (nominal diameter)

Flow coefficient:

the quantity of water, from $+5^{\circ}$ C to $+30^{\circ}$ C, which flows through the solenoid valve with a pressure drop of 1 bar (100 KPa-0.1 MPa) expressed in m³/h (cubic metres per hour).

Minimum operating pressure:

the lowest differential pressure required for operation, expressed in bar.

In "direct operated"

solenoid valves a minimum pressure drop is not required.

In "servocontrolled"

solenoid valves the minimum differential pressure indicated in the table is required.

Maximum operating pressure differential (M.O.P.D.):

the highest working differential pressure with 90% of the rated voltage (-10% Vn) applied to the solenoid coil (for a.c.) and with 95% of the rated voltage (-5% Vn) (for d.c.).

NP - Maximum test pressure:

the maximum static pressure which can be applied to the solenoid valve to check the tightness of the mechanical seals (threads, welds) and the mechanical resistance of the materials.

We recommend applying this pressure

simultaneously to all fittings

to avoid damage to the internal parts, in particular the seals.

Safe working pressure (S.W.P.):

the line or system pressure to which the valve can be subjected safely.

Climate & Industrial Controls

Valve type:

see example of solenoid valve nomenclature.

Coil type:

see coil coding example.

Power:

the rated power under normal conditions of the solenoid expressed in W.

Materials:

Body - main material of the valve body:

- BR = brass
- Seals materials used for seal disc, diaphragms, gaskets.

The following abbreviations are used:

N = NBR (nitrile butadene rubber)

•Synthetic elastomer of standard quality for neutral fluids, such as air, water and oils with working temperatures from -10° C to $+90^{\circ}$ C.

F = CR (chloroprene)

•Synthetic elastomer particularly suitable for water, mineral oils, refrigerants, with working temperatures from -30°C to +90°C.

H = EPDM (ethylene propylene)

•Synthetic elastomer suitable for hot water and steam with working temperatures from -10° C to $+140^{\circ}$ C.

V = FPM (Viton)

•Fluorinated elastomer suitable for oils, fuel gases, petrols and solvents. Working temperatures from -10°C to +140°C.

R = Ruby

•Synthetic corundum (hard stone) with high hardness values and total inertia for all types of fluids. Working temperatures from -40°C to +180°C.

T = PTFE (Teflon)

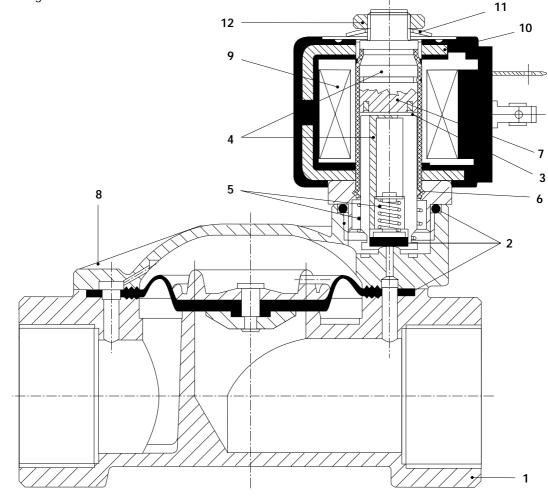
• Plastic material without springback and inert to most fluids, including refrigerants.

Working temperatures from -40°C to +180°C. In the case of "Teflon diaphragm ", this refers to a glass fiber fabric between two layers of PTFE.

L = PTFE with filler (Rulon)

•Plastic material with coloured mineral fillers, without springback, inert to most fluids, including refrigerants. Working temperature from -40°C to +180°C. More resistant than virgin PTFE to compression and wear.

Weight:


weight of the complete valve without accessories (kg).

For further explanation on how to use the tables see pp 2-3.

Construction materials

Materials of solenoid valves for industrial applications

- 1) Valve body: OT58 brass stamping UNI 5705 (MS 58 = Cu Zn 41 Pb2F38 DIN 17673).
- 2) Seals (gaskets discs diaphragms):
- N = NBR
 - H = EPDM
 - V = Viton
 - R = Ruby
 - T = PTFE
- 3) Enclosing tube: AISI 304 stainless steel (DIN 1.4301).
- 4) Plungers (fixed and moveable): AISI 430 FR stainless steel (DIN 1.4104).
- 5) Spring: AISI 302 stainless steel (DIN 1.4319).
- 6) Solder: silver alloy (56% Ag).
- 7) Phase displacement ring: copper (98% Cu).
- 8) Cover screws: C35B steel with tropical galvanising.
- 9) Coil: continuous service, 100% ED
 - Class F (155°C)
 moulded polyester resin
 with 30% glass fiber.
- 10) Nameplate: aluminium.
- **11) Spring washer:** steel for springs with white galvanising.
- 12) Coil nut: white galvanised steel.

Conversion tables

Viscosity conversion table

Centistokes	°Engler	Saybolt Universal Second	Redwood Second n.1	Centistokes	°Engler	Saybolt Universal Second	Redwood Second n.1
cStokes mm²/S	°E	SSU	SRW n.1	cStokes mm²/S	°E	SSU	SRW n.1
1	1	—	_	115	15	525	465
12	2	65	55	150	20	685	610
22	3	100	90	200	26	910	810
30	4	140	120	300	39	1385	1215
38	5	175	155	400	53	1820	1620
45	6	210	185	500	66	2275	2025
60	8	275	245	750	97	3365	2995
75	10	345	305	1500	197	6820	6075
90	12	415	370				

Note: there are no common factors between these units and the S.I. official system.

The table above is only a reference for comparison between the various units.

Pressure conversion table

bar	N/cm ²	MPa	Psi	bar	N/cm ²	MPa	Psi	bar	N/cm ²	MPa	Psi
0,1	1	0,01	1,450	7,0	70	0,70	101,500	25,0	250	2,50	362,500
0,2	2	0,02	2,900	7,5	75	0,75	108,750	26,0	260	2,60	377,000
0,3	3	0,03	4,350	8,0	80	0,80	116,000	27,0	270	2,70	391,500
0,4	4	0,04	5,800	8,5	85	0,85	123,250	28,0	280	2,80	406,000
0,5	5	0,05	7,250	9,0	90	0,90	130,500	29,0	290	2,90	420,500
0,6	6	0,06	8,700	9,5	95	0,95	137,750	30,0	300	3,00	435,000
0,7	7	0,07	10,150	10,0	100	1,00	145,000	35,0	350	3,50	507,500
0,8	8	0,08	11,600	11,0	110	1,10	159,950	40,0	400	4,00	580,000
0,9	9	0,09	13,050	12,0	120	1,20	174,000	45,0	450	4,50	652,500
1,0	10	0,10	14,500	13,0	130	1,30	188,500	50,0	500	5,00	725,000
1,5	15	0,15	21,750	14,0	140	1,40	203,000	55,0	550	5,50	797,500
2,0	20	0,20	29,000	15,0	150	1,50	217,500	60,0	600	6,00	870,000
2,5	25	0,25	36,250	16,0	160	1,60	232,000	65,0	650	6,50	942,500
3,0	30	0,30	43,500	17,0	170	1,70	246,500	70,0	700	7,00	995,400
3,5	35	0,35	50,750	18,0	180	1,80	261,000	75,0	750	7,50	1015,000
4,0	40	0,40	58,000	19,0	190	1,90	275,500	80,0	800	8,00	1160,000
4,5	45	0,45	65,250	20,0	200	2,00	290,000	85,0	850	8,50	1232,500
5,0	50	0,50	72,500	21,0	210	2,10	204,500	90,0	900	9,00	1305,000
5,5	55	0,55	79,750	22,0	220	2,20	319,000	95,0	950	9,50	1377,500
6,0	60	0,60	87,000	23,0	230	2,30	333,500	100,0	1000	10,00	1450,000
6,5	65	0,65	94,250	24,0	240	2,40	348,000				

1 Kg/cm² = 0,981 bar

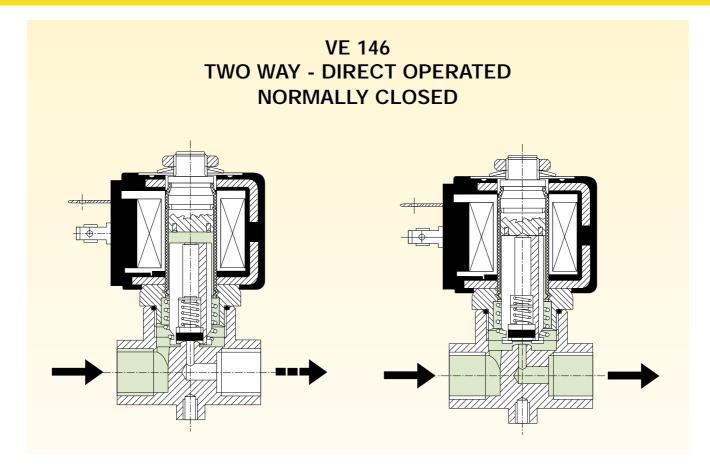
1 bar = 10 N/cm²

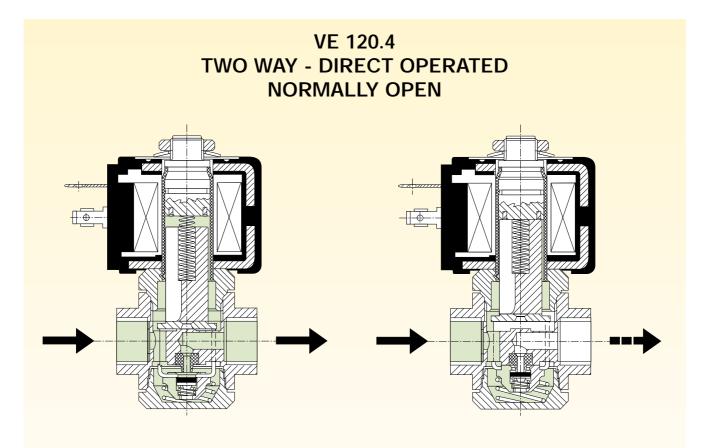
1 bar = 0,1 MPa

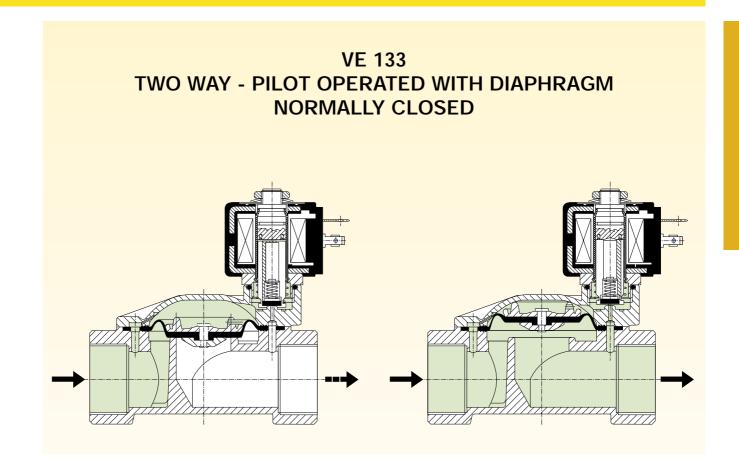
1 bar = 14,5 Psi

Temperature conversion table

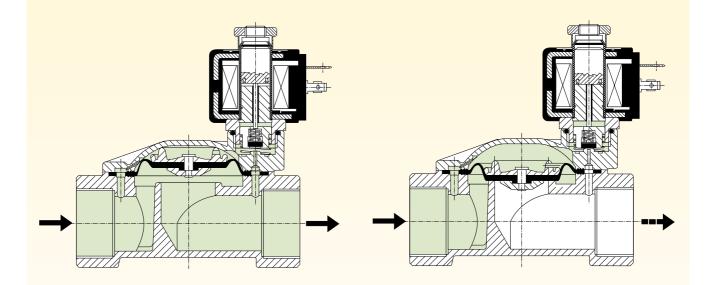
°C	К	°F	°C	К	°F	°C	К	°F	°C	К	°F
-50	223	-58,0	1	274	33,8	51	324	123,8	105	378	221,0
-49	224	-56,2	2	275	35,6	52	325	125,6	110	383	230,0
-48	225	-54,4	3	276	37,4	53	326	127,4	115	388	239,0
-47	226	-52,6	4	277	39,2	54	327	129,2	120	393	248,0
-46	227	-50,8	5	278	41,0	55	328	131,0	125	398	257,0
-45	228	-49,0	6	279	42,8	56	329	132,8	130	403	266,0
-44	229	-47,2	7	280	44,6	57	330	134,6	135	408	275,0
-43	230	-45,4	8	281	46,4	58	331	136,4	140	413	284,0
-42	231	-43,6	9	282	48,2	59	332	138,2	145	418	293,0
-41	232	-41,8	10	283	50,0	60	333	140,0	150	423	302,0
-40	233	-40,0	11	284	51,8	61	334	141,8	155	428	311,0
-39	234	-38,2	12	285	53,6	62	335	143,6	160	433	320,0
-38	235	-36,4	13	286	55,4	63	336	145,4	165	438	329,0
-37	236	-34,6	14	287	57,2	64	337	147,2	170	443	338,0
-36	237	-32,8	15	288	59,0	65	338	149,0	175	448	347,0
-35	238	-31,0	16	289	60,8	66	339	150,8	180	453	356,0
-34	239	-29,2	17	290	62,6	67	340	152,6	185	458	365,0
-33	240	-27,4	18	291	64,4	68	341	154,4	190	463	374,0
-32	241	-25,6	19	292	66,2	69	342	156,2	195	468	383,0
-31	242	-23,8	20	293	68,0	70	343	158,0	200	473	392,0
-30	243	-22,0	21	294	69,8	71	344	159,8	205	478	401,0
-29	244	-20,2	22	295	71,6	72	345	161,6	210	483	410,0
-28	245	-18,4	23	296	73,4	73	346	163,4	215	488	419,0
-27	246	-16,6	24	297	75,2	74	347	165,2	220	493	428,0
-26	247	-14,8	25	298	77,0	75	348	167,0	225	498	437,0
-25 -24	248 249	-13,0	<mark>26</mark> 27	299 300	78,2 80,6	76 77	349 350	<mark>168,8</mark> 170,6	230 235	503 508	446,0 455,0
-24	249	-11,2 - 9,4	27	300	80,0	78	350	170,0	233	508	455,0
-22	250	- 7,6	20	302	84,2	78	352	172,4	240	518	473,0
-22	252	- 5,8	30	303	86,0	80	353	174,2	243	523	473,0
-20	253	- 4,0	31	303	87,8	81	353	177,8	255	528	491,0
-19	254	- 2,2	32	305	89,6	82	355	179,6	260	533	500,0
-18	255	- 0,4	33	306	91,4	83	356	181,4	265	538	509,0
-17	256	1,4	34	307	93,2	84	357	183,2	270	543	518,0
-16	257	3,2	35	308	95,0	85	358	185,0	275	548	527,0
-15	258	5,0	36	309	96,8	86	359	186,8	280	553	536,0
-14	259	6,8	37	310	98,6	87	360	188,6	285	558	545,0
-13	260	8,6	38	311	100,4	88	361	190,4	290	563	554,0
-12	261	10,4	39	312	102,2	89	362	192,2	295	568	563,0
-11	262	12,2	40	313	104,0	90	363	194,0	300	573	572,0
-10	263	14,0	41	314	105,8	91	364	195,8	310	583	590,0
- 9	264	15,8	42	315	107,6	92	365	197,6	320	593	608,0
- 8	265	17,6	43	316	109,4	93	366	199,4	330	603	626,0
- 7	266	19,4	44	317	111,2	94	367	201,2	340	613	644,0
- 6	267	21,2	45	318	113,0	95	368	203,0	350	523	662,0
- 5	268	23,0	46	319	114,8	96	369	204,8	360	633	680,0
- 4	269	24,8	47	320	116,6	97	370	206,6	370	643	698,0
- 3	270	26,6	48	321	118,4	98	371	208,4	380	653	716,0
- 2	271	28,4	49	322	120,2	99	372	210,2	390	663	734,0
- 1	272	30,2	50	323	122,0	100	373	212,0	400	673	752,0
0	273	32,0									
		К	= °C + 273		°F = ((°C x 9/5) + 32		°C = ((F - 32) x 5/9		

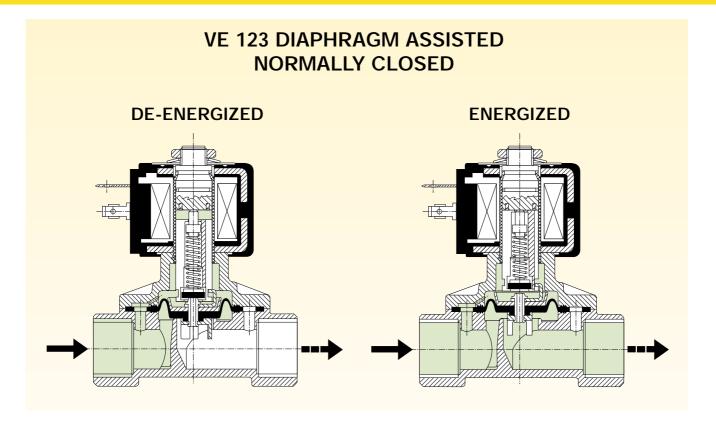

Flow rate conversion table

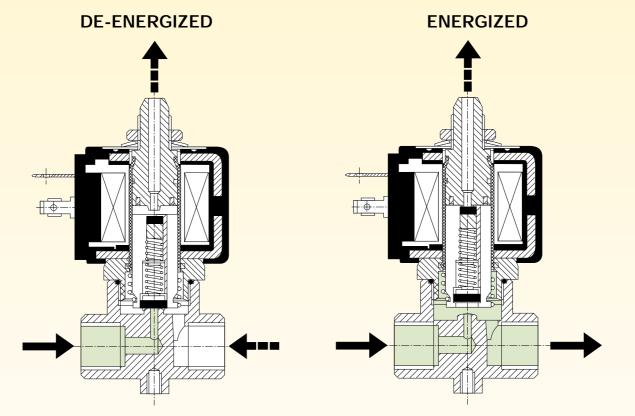

l/min	m³/h	l/min	m³/h	l/min	m³/h	I/min	m³/h
0,1	0,006	26	1,560	120	7,202	320	19,207
0,2	0,012	27	1,620	125	7,503	330	19,807
0,3	0,018	28	1,680	130	7,803	340	20,408
0,4	0,024	29	1,740	135	8,103	350	21,008
0,5	0,030	30	1,800	140	8,403	360	21,608
0,6	0,036	31	1,860	145	8,703	370	22,208
0,7	0,042	32	1,920	150	9,002	380	22,809
0,8	0,048	33	1,980	155	9,303	390	23,409
0,9	0,054	34	2,040	160	9,603	400	24,009
1,0	0,060	35	2,100	165	9,904	410	24,609
1,5	0,090	36	2,160	170	10,204	420	25,210
2,0	0,120	37	2,220	175	10,504	430	25,810
2,5	0,150	38	2,280	180	10,804	440	26,410
3,0	0,180	39	2,340	185	11,104	450	27,010
3,5	0,210	40	2,410	190	11,404	460	27,611
4,0	0,240	41	2,461	195	11,704	470	28,211
4,5	0,270	42	2,521	200	12,004	480	28,811
5,0	0,300	43	2,581	205	12,304	490	29,411
6,0	0,360	44	2,641	210	12,605	500	30,012
7,0	0,420	45	2,701	215	12,905	510	30,612
8,0	0,480	46	2,761	220	13,205	520	31,212
9,0	0,540	47	2,821	225	13,505	530	31,812
10	0,600	48	2,881	230	13,805	540	32,413
11	0,660	49	2,941	235	14,105	550	33,013
12	0,720	50	3,001	240	14,405	560	33,613
13	0,780	55	3,301	245	14,705	570	34,213
14	0,840	60	3,601	250	15,006	580	34,813
15	0,900	65	3,901	255	15,306	590	35,414
16	0,960	70	4,201	260	15,606	600	36,014
17	1,020	75	4,501	265	15,906	650	39,015
18	1,080	80	4,801	270	16,206	700	40,016
19	1,140	85	5,102	275	16,506	750	45,018
20	1,200	90	5,402	280	16,806	800	48,019
21	1,260	95	5,702	285	17,106	850	51,020
22	1,320	100	6,002	290	17,407	900	54,021
23	1,380	105	6,302	295	17,707	1000	60,024
24	1,440	110	6,602	300	18,007		
25	1,500	115	6,902	310	18,607		

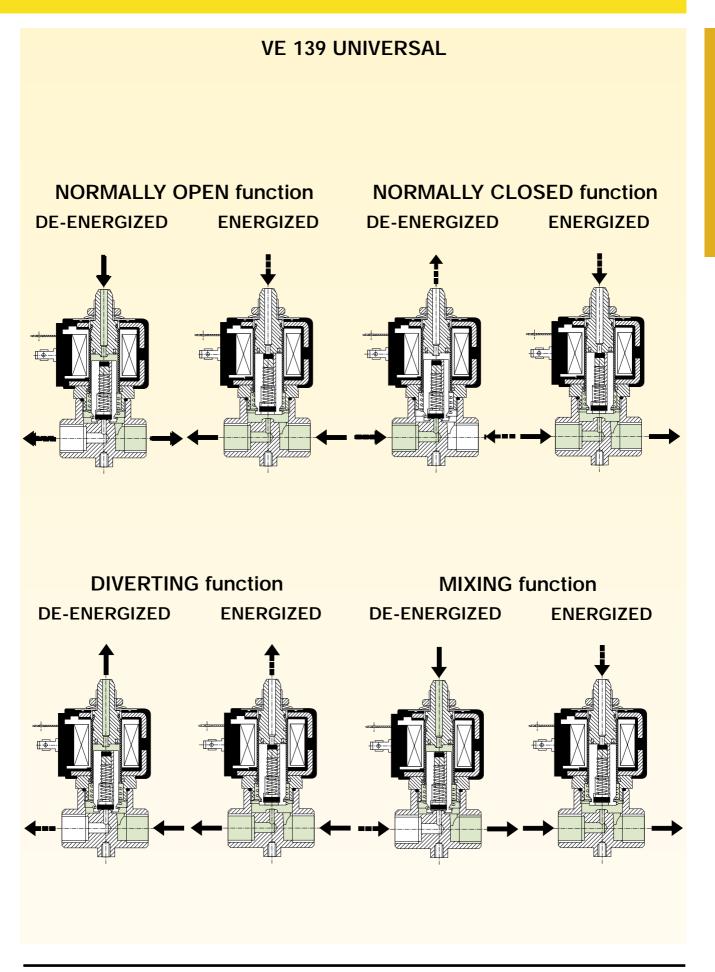

 $m^{3}/h = I/min \ge 0,06$

I/min = m³/h x 16,67


m³/sec = m³/h x 2,778x10⁻⁴






VE 143 TWO WAY - PILOT OPERATED WITH DIAPHRAGM NORMALLY OPEN

VE 141 V THREE WAY NORMALLY CLOSED

Sizing solenoid valves

The correct choice of a solenoid value is essential as it determines the regulation and performance required for practical application on a system.

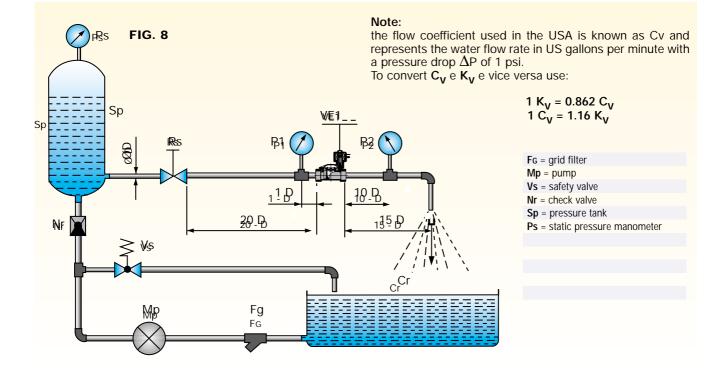
In order to decide on the exact type of solenoid valve, various parameters have to be known. However the calculation method, based on the **flow coefficient Kv**, has proved highly practical as it can be determined on the basis of:

- required flow rate
- flow resistance
- type of fluid and relative viscosity
- specific gravity and temperature.

This flow coefficient Kv is determined as laid down in the VDI/VDE 2173 standards and represents the flow of water in m^3/h with a temperature from 5 to 30°C which passes through the solenoid valve with a pressure drop of 1 bar (see Fig. 8).

After the existing conditions have been converted into this factor Kv, the type of valve is found by referring to the pages in the specific sections in this catalogue.

The parameters used for sizing the solenoid valve are the following:


(consult the conversion tables of the various units of measurement as defined by the ISO (International Standards Organisation) - I.S. (International System) set out in this catalogue)

	symbol unit of measurement king pressure	P)	[bar]
(P2)	op symbol unit of measurement ssure difference betwe) of the solenoid val ving through the valve (a	ve wher	n a medium is
Flow coeffic	sient symbol unit of measurement	(Kv)	[m³/h]
Specific gra	vity of the medium symbol unit of measurement	(γ)	[Kg/dm³]
Temperature	e of the medium symbol unit of measurement	(t)	[°C]
Flow rate: • for liquids • for gases • for steam	symbol unit of measurement symbol unit of measurement symbol	(Q) (Qn) (Qv)	[m ³ /h] [Nm ³ /h]

Specific volume		
5	(Vs)	F 204 F
unit of measurement		[m³/Kg]

unit of measurement

[Kg/h]

Sizing solenoid valves

BY FORMULAE:

a) Solenoid valves for liquids:

Flow rate:

where:

$$Q = m^3/h$$

 $\Delta P = bar$
 $\gamma = Kg/dm^3$

Flow coefficient:

 $Kv = Q \cdot \sqrt{\frac{\gamma}{\Delta P}}$

 $Q = Kv \cdot \sqrt{\frac{\Delta P}{\gamma}}$

In the case of liquids with viscosity greater than $3^{\circ}E$ (22 cStokes) the Kv is modified according to the formula:

$$Kv_1 = Kv + C$$
$$C = \frac{\delta \sqrt{Kv}}{200 \cdot Q} + 1$$

where C is the viscosity correction factor calculated by means of the formula:

where:

- $\delta = \text{kinematic viscosity of the fluid expressed in} \\ \text{centistokes}$
- Kv = flow rate factor of the solenoid valve

Q = flow rate in m^3/h .

$$\Delta \mathsf{P} = \gamma \cdot \left(\frac{\mathsf{Q}}{\mathsf{K}\mathsf{v}}\right)^2$$

Pressure drop:

b) Solenoid valves for gases:

If $\Delta P \le 1/2 P_1$ use the following formulae:

Flow rate:
$$Qn = 514 \cdot Kv \sqrt{\frac{\Delta P \cdot P_2}{\gamma n \cdot (273 + t)}}$$
 where:
 $Qn = Nm^3/h$
 $P_1 = bar$

Flow coefficient: $Kv = \frac{Qn}{514} \cdot \sqrt{\frac{(273 + t) \cdot \gamma n}{\Delta P \cdot P_2}}$

Pressure drop:

$$=\frac{(273 + t) \cdot \gamma n}{P_2} \cdot \frac{Qn^2}{(514 \cdot Kv)^2}$$

If $\Delta P > 1/2 P_1$ use the following formula:

 ΔP

$$Qn = 757 \cdot Kv \cdot \sqrt{\frac{\Delta P \cdot P_2}{(273 + t) \cdot \gamma n}}$$

c) Solenoid valves for steam:

If $\Delta P \le 1/2 P_1$ use the following formulae:

$$Kv \cdot \sqrt{\frac{\Delta P}{Vs}}$$
 where:
 $Qv = Kg/h$
 $\Delta P = bar$
 $Vs = m^3/Kg$

Flow coefficient:

Pressure drop:

$$= V_{S} \cdot \frac{Qv^2}{(31.7 \times Kv)^2}$$

If $\Delta P > 1/2 P_1$ use the following formula:

ΔP

$$Qv = 22.4 \cdot Kv \sqrt{\frac{P_1}{Vs}}$$

Notes:

- 1) Should the value ΔP not be specified, use the following, which is based on experience:
- For liquids only in the case of free discharge $\Delta P = 90\%$ of the input pressure (P₁).
- For gases never use a ΔP of more than 50% of the absolute inlet pressure, since the excessive pressure drop may cause an irregular flow rate.
 In most cases, ΔP can be considered as 10% of the input pressure.
- 2) Specific volume value (Vs) for dry saturated steam, see the table in diagram 3.

GRAPHIC SIZING:

In addition to the arithmetical method, the flow rate Q or other values can be calculated by using the following diagrams:

Diagram 1: for liquids (up to 3°E) (page 24)

Example: Water (γ_1). A calculation of the flow rate Q is required, using a solenoid valve with Kv = 0.6 at pressure P₁ = 15 bar and with a pressure drop of ΔP = 9 bar.

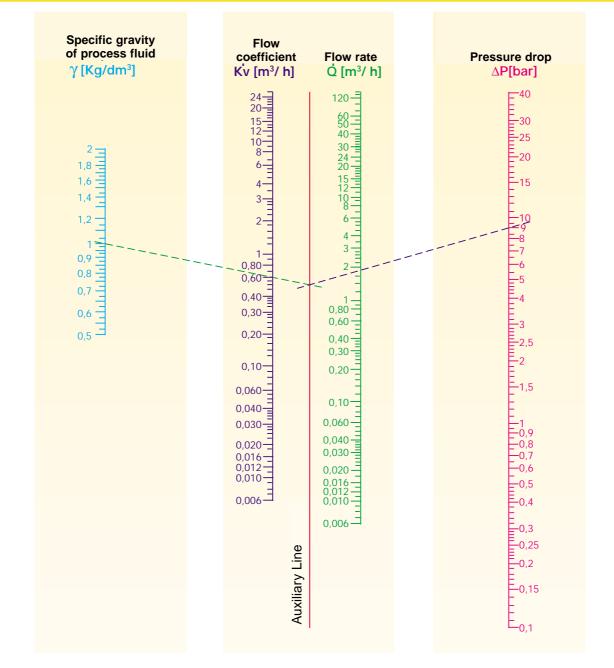
A line is plotted which joins point 1 on the "specific gravity" line, and point 0.6 on the "Kv" line as far as the auxiliary line. The point on this line should be plotted to point 9 on the ΔP line. The straight line plotted crosses the flow rate line "Q" at point 1.8. the value is therefore Q = 1.8 m³/h.

Diagram 2: for gases (page 25)

Example: Air (γ n = 1.3). A calculation of the flow rate Qn is required with: t = 20°C, Kv = 0.6; P₁ = 12 bar; DP = 3 bar.

Point 20 on the temperature line and point 1.3 on the specific gravity line are joined by a straight line as far as the first auxiliary line. The point found on this line should be plotted to point 0.6 on the "Kv" line and the straight line is extended until it crosses the second auxiliary line. This point should be plotted to the one found on the third auxiliary line at the intersection of the pressure curve "P₁" (12 bar) with the pressure drop line " Δ P" (3 bar). The line which joins the latter two points intersects the flow rate line "Qn" at the value of 80 Nm³/h.

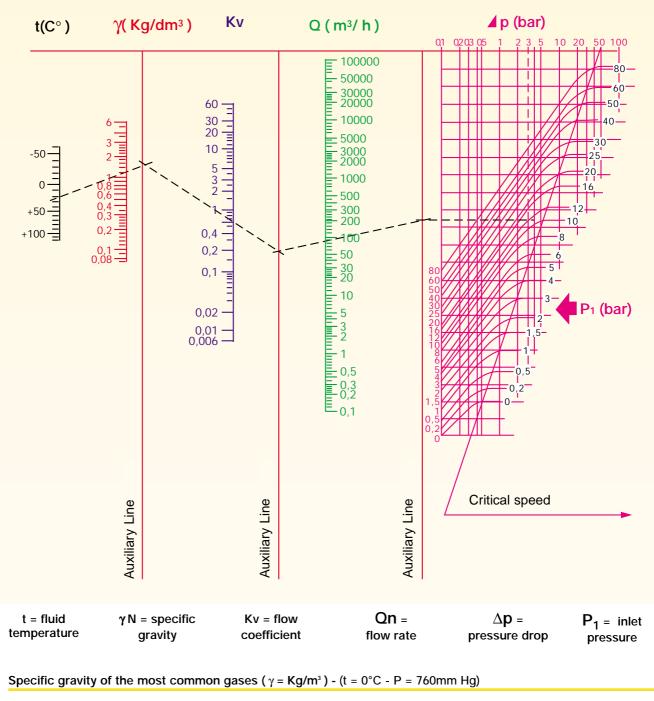
Diagram 3: for dry saturated steam - (page 26)


Example: calculate "Qv" with: $P_2 = 5$ bar; $\Delta P = 2$ bar; Kv = 0.5. Using the same method as for diagram 1 the various points can be joined up using the auxiliary line and the value Qv is 36 kg/h.

Naturally, given the possibility of combining various errors graphically (readouts, joining lines, intersections on auxiliary lines etc.), the values obtained from diagrams are approximate and it is therefore advisable to compare them, each time, with the values obtained using formulae.

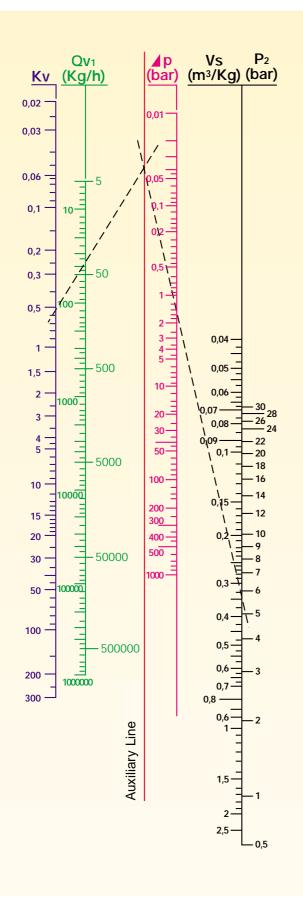
 $Kv = \frac{Qv}{21.7}$

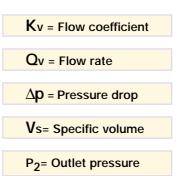
Diagram 1 for liquids (up to 3°E)



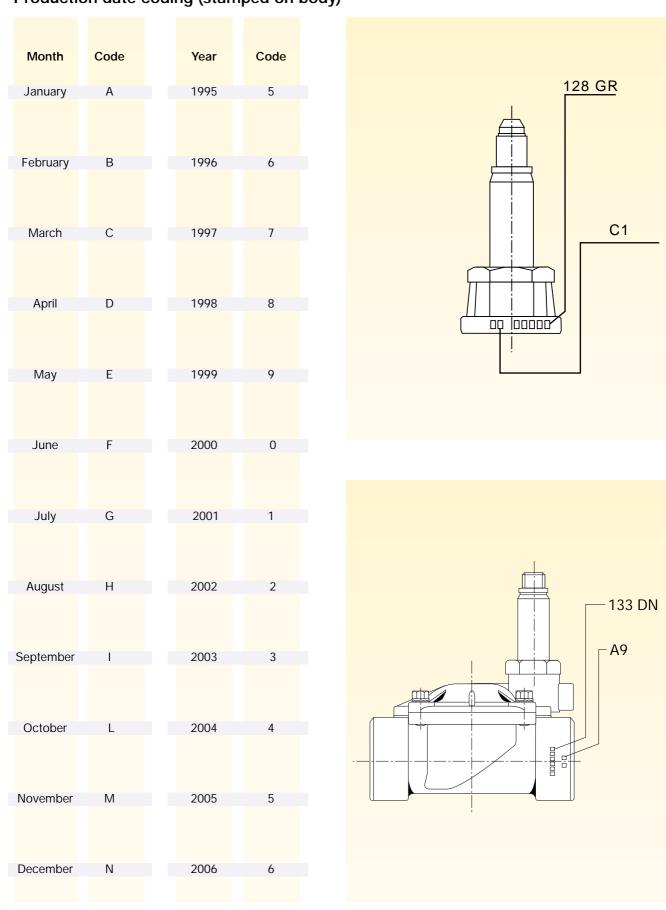
Specific gravity of thr most common fluids (γ = Kg/dm³) - (t = 15°C - P = 760mm Hg)

Acetone	0,79	Benzenol	0,90	Naphtha	0,76
Water	1,00	Beer	1,02	Pentane	0,63
Sea water	1,02	Hexane	0,66	Vegetable oil	0,92
Ethyl alcohol	0,79	Ethane	0,68	Hydraulic oil	0,92
Methyl alcohol	0,81	Diesel oil	0,70	Wine	0,95
Petrol	0,68	Milk	1,03		




Diagram 2 for gases

Acetylene	1,176	Helium	0,179	Natural gas	0,723
Carbon dioxide	1,965	Ethane	1,035	Methane	0,722
Air	1,293	Ethylene	1,259	Carbon monoxide	1,250
Argon	1,78	Hydrogen	0,089	Oxygen	1,429
Nitrogen	1,255			Propane	1,52
Butane	2,00			Steam	0,805


Diagram 3 for dry saturated steam

Steam (dry saturated) data

P ₂ bar	Temp. °C	Vs m³/Kg	P ₂ bar	Temp. °C	Vs m³/Kg
0,01	6,6	131,6	11	183,2	0,181
0,02	17,1	68,3	12	187,1	0,176
0,03	23,7	46,5	13	190,7	0,155
0,04	28,6	35,5	14	194,1	0,144
0,05	32,5	28,7	15	197,4	0,135
0,06	35,8	24,2	16	200,4	0,126
0,08	41,1	18,5	17	203,4	0,119
0,1	45,4	15,0	18	206,2	0,113
0,2	59,7	7,80	19	208,8	0,107
0,2	68,7	5,33	20 22	211,4 216,2	0,102 0,093
0,3	75,4	4,07	22	210,2	0,093
	80,9	3,30	24	220,8	0,085
0,5			28	229,0	0,073
0,6	85,5	2,79	30	232,8	0,068
0,7	89,5	2,41	32	236,4	0,064
0,8	93,0	2,13	34	239,8	0,060
0,9	96,2	1,91	36	243,1	0,057
1,0	99,1	1,73	38	246,2	0,053
1,5	110,8	1,18	40	249,2	0,051
2,0	119,6	0,90	45	256,2	0,045
2,5	126,8	0,73	50	262,7	0,040
3,0	132,9	0,62	55	268,7	0,036
3,5	138,2	0,53	60	274,3	0,033
4,0	142,9	0,47	65	279,6	0,030
4,5	147,2	0,42	70	284,5	0,028
5,0	151,1	0,38	80	293,6	0,024
5,5	154,7	0,35	90	301,9	0,021
6,0	158,1	0,32	100 150	309,5 340,5	0,018 0,011
6,5	161,2	0,30	200	340,5	0,001
7,0	164,2	0,28	200	374,0	0,000
7,5	167,0	0,26	225	577,0	0,003
8,0	169,6	0,25			
8,5	172,1	0,23			
9,0	174,5	0,22			
9,5	176,8	0,22			
10,0	179,0	0,20			
10,0	177,0	0,20			

Production date coding (stamped on body)

251 kGr Climate & Industrial Controls

Fluid compatibility table

1= Good 2 = Satisfactory N.B. all the fluids are at ambient temperature unless otherwise indicated.

FLUID	MATERIAL						
	STAINLESS STEEL	BRASS	NBR	VITON	EPDM	NEOPRENE	RUBY TEFLON
Acetone	1	1	-	-	1	-	1
Air	1	1	1	1	1	1	1
Ammonia	1	-	-	-	-	1	1
Animal oil	1	1	1	1	-	-	1
Amyl acetate	1	2	-	-	-	-	1
Amyl alcohol	1	2	-	2	1	2	1
Argon	1	1	-	1	1	-	-
Beer	1	1	1	1	1	1	1
Borax	1	1	2	1	1	-	1
Boric acid	1	2	1	1	1	1	1
Butane gas	1	1	1	1	-	2	-
Butane gas	1	1	1	1	-	-	-
Butyl alcohol	1	2	1	1	-	1	1
Butylene	1	1	-	1	-	-	1
Calcium bisulphite	1	2	1	1	-	1	1
Calcium chloride	1	2	1	1	1	1	1
Carbon dioxide - CO2	1	1	1	2	-	-	1
Chlorobenzene	1	2	-	1	-	-	1
Coffee	1	1	1	1	1	1	1
Cyclohexane	1	1	1	1	-	-	1
Diesel oil	1	1	1	1	-	-	1
Distilled water	1	2	1	2	1	1	1
Dry bromine	1	1	-	2	-	-	1
Ethyl alcohol	1	2	1	-	1	1	1
Ethyl chloride	1	2	1	1	1	-	1
Ethylene glycol	1	2	1	1	1	1	1
Formic acid	1	2	-	-	-	1	1
Fuel oil	1	1	1	1	-	-	1
Fruit juice	1	2	1	1	-	1	1
Fresh water	1	1	1	2	1	1	1
Glycerol	1	2	1	1	1	1	1
Glycol	1	2	1	1	1	1	1
Glucose	1	1	1	1	1	1	1
Helium	1	1	1	1	1	1	-
Heptane	1	1	1	1	-	-	1
Hexane	1	2	1	1	-	-	1
Hydrogen	1	2	1	1	1	1	-
Isoxathian	1	1	1	1	-	-	1
Kerosine	1	1	1	1	_	_	1

FLUID	MATERIAL						
	STAINLESS STEEL	BRASS	NBR	VITON	EPDM	NEOPRENE	RUBY TEFLON
LPG gas	1	1	1	1	-	-	1
Methane gas	1	1	1	1	-	-	-
Methyl acetate	1	1	-	-	-	-	1
Methyl alcohol	1	2	1	-	1	1	1
Methyl chloride	1	1	-	1	-	-	1
Methyl-ethyl-ketone	1	1	-	-	1	-	1
Milk	1	2	1	1	1	1	1
Mineral oil	1	1	1	1	-	2	1
Naphtha	1	2	2	1	-	-	1
Natural gas	1	1	1	1	-	-	-
Neon	1	1	1	1	1	1	-
Nitrogen	1	1	1	1	1	1	1
Oxygen	1	1	-	1	1	1	-
Ozone	1	1	-	1	1	-	-
Paint	1	1	-	1	-	-	1
Palmitic acid	1	2	-	1	-	2	1
Pentane	1	1	1	1	-	-	1
Perchloroethylene	1	2	2	1	-	-	1
Petrol	1	1	1	1	-	-	1
Petroleum	1	2	1	1	-	-	1
Phenol	1	2	-	1	-	-	1
Potassium chloride	1	2	1	1	1	1	1
Propane gas	1	1	1	1	-	-	-
Propyl alcohol	1	1	1	1	1	1	1
Sea water	1	2	1	1	1	1	1
Silicone oil	1	1	1	1	1	1	1
Soap solution	1	1	1	1	1	-	1
Sodium bicarbonate	1	2	1	1	1	1	1
Steam at 140°C	1	1	-	2	1	-	1
Steam at 180°C	1	1	-	-	1	-	1
Tartaric acid	1	1	1	1	-	-	1
Toluene	1	1	-	2	-	-	1
Trichloroethane	1	2	-	1	-	-	1
Trichlorethylene	1	2	-	1	-	-	1
Vegetable oil	1	2	1	1	-	-	1
Vinegar	1	2	-	1	-	2	1
Wet bromine	1	2	-	2	-	-	1
Xylene	1	1	-	1	-	-	1

1= Good 2 = Satisfactory N.B. all the fluids are at ambient temperature unless otherwise indicated.

Coils

The Parker coils mounted on the solenoid valves are designed and tested for continuous service (100% ED) and are manufactured according to CEE-EL. -10 directives and hence meet all the electrical standards of the major European countries (VDE, CEI, BSI, UTE, SEV, NSD, SEMKO, DEMKO, NEMKO).

The insulation of the copper wire used for the windings are chosen according to the classes of insulation defined in the IEC recommendations.

External insulation is achieved by encapsulation in thermoplastic resin with 30% glass fiber, to make the coil airtight, mould-proof and suitable for tropical climates. All coils are tested for satisfactory performance at the following rated voltage tolerances: $\pm 10\%$ for a.c.; $\pm 10\%$ -5% for d.c..

The ambient temperature which the coils can withstand depends on the following factors: 1) Coil wattage.

2) Coil overheating due to continuous service energisation. May be checked by resistance change test (Δ T).

3) Service of the coil (continuous service or intermittent service). Coil in continuous or intermittent use.

4) Temperature of the fluid which is shut off by the solenoid valve. Ambient conditions which may affect heat dissipation.

5) Conditions of dissipation of the environment in which the solenoid valve is installed.

All the coils, as mentioned previously, are designed for continuous service, therefore the maximum ambient temperature value (bearing in mind the influence of the fluid temperature) is 50°C (for windings in class F) and +80°C (for windings in class H). However, if the coil is used for intermittent or short service, the maximum overheating values (ΔT) occurring with continuous energisation are not attained, therefore the ambient temperature can be increased. The specific values are determined for each case, in that the applications and possible uses of a solenoid valve are numerous.

Continuous service function:

This depends on the coil classification. With unlimited operation (always energised) at an ambient temperature of 20°C, the coils, after approximately 45 - 120 min., reach the maximum temperature rise (Δ T). (Rated voltage increased by 10%).

In this case, the ambient temperature (as already mentioned, including any dissipation externally of high fluid temperatures) must not exceed the values indicated for each model of solenoid valve.

Intermittent service function (or with a relative energisation duration)

This is the most common condition of use, characterised by an energisation time and by a rest time. When these times are known exactly, a coil with greater power can be designed to obtain better performance with the solenoid valve or the solenoid valve can be operated in an area with higher temperatures than those indicated in the catalogue tables, subject to a check on the temperature increase (Δ T) made during these working times. By determining the relative energisation duration the work and rest times can be calculated with the following formula:

Normally 1h is taken as the total cycle time basis:

Relative energisation duration (ED) 75% 45' 15' 60% 36' 24' 50% 30' 30' 40% 24' 36'	100%		Continuous service
25% Energisation time Rest time (min.)	60% 50% -	36' 30' 24' 15'	<u> </u>

Degree of protection IP - according to DIN 40050

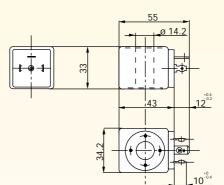
Refers to coils fitted with connector or plug.

IP* * * Degree of enclosure protection for electrical equipment up to 1000V ~ e 1500 V =									
Figu	re 1: protection	against solids	Figu	ure 2: protection	against liquids		Figu	ure 3: mechanic	al protection
IP	Test		IP	Test		1	IP	Test	
0		No Protection	0		No Protection		0		No Protection
1	Ø 52.5 mm 9	Protected against solids greater than 50 mm (e.g. acci- dental contact with hand).	1	, , , ,	Protected against vertical drips (condensation).		1	150 g 115 cm	Impact energy:: 0.225 joules
2	Ø 12.5 mm	Protected against solids greater than 12 mm (e.g. fin- gers).	2		Protected against drips of water up to 15° from the vertical plane.		2	250 g 15 cm	Impact energy: 0.375 joules
3	(<u>)</u> 25 mm	Protected against solids greater than 2.5 m (tools, wires).	3		Protected against falling water and rain up to 60° from the vertical plane.		3	250 g 220 cm	Impact energy: 0.375 joules
4		Protected against solids greater than 1 mm (fine tools, thin wires)	4		Protected against jets of water from all directions.		4	500 g 40 cm	Impact energy: 2.00 joules
5	\bigcirc	Protected against dust (no harmful deposit).	5		Protected against jets of water with nozzle from all directions.		7	1.5 Kg	Impact energy: 6.00 joules
6	O	Totally protected against dust.	6		Protected against projections of water similar to sea waves.		9	5 Kg 40 cm	Impact energy: 2.00 joules
			7	15 cm 30 min	Protected against the effects of immersion.				
	In the	e case of soleno	id valve		-	o figu	ures	are indicated,	
e.g. IP43-IP65									

Z coil

Coil manufactured from **class H** copper wire, moulded in thermoplastic:

- (polyester) with 30% glass fiber (type ZB);
- (polyphenylene) with 40% glass fiber (type ZH).


Features:

Protection	DIN 40050 = IP 65 with connector
Connector	DIN 43650 A - PG 9 or PG 11
Frequency	50/60 Hz

Types available:

- * IMQ, VDE, UL approved for standard voltages
- Class F (155°C)
 ZB09 = 16 VA 9 W a.c. Service (25 VA Inrush)
 ZB12 = 12 W d.c.
 ZB14 = 25 VA 14 W a.c. Service (33 VA Inrush)
 ZB16 = 16 W d.c.
- 2) Class H (180°C)
 •ZH14 = 25 VA 14 W a.c. Service (33 VA Inrush)
 •ZH16 = 16 W d.c.

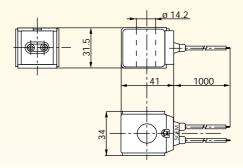
Y coil

Coil manufactured from $\mbox{class}\ \mbox{H}$ copper wire, moulded in thermoplastic:

- (polyester) with 30% glass fiber;

Features

Protection	D
Electrical connection	t۱
Frequency	5


DIN 40050 = IP 67 wo 1000 mm cables 50/60 Hz

Types available:

- IMQ, VDE, UL approved for standard voltages
- 1) Class F (155°C)
 - •YB09 = 15 VA 9 W a.c. Service (24 VA Inrush) •YB12 = 12 W d.c.
 - •YB14 = 24 VA 14 W a.c. Service (32 VA Inrush) •YB16 = 16 W d.c.
- 2) Class E (120°C)
 •YEO9 = 15 VA 9 W a.c.

Note: recommended for applications where humidity is particularly severe and where ice formation or defrosting may occur.

J coil

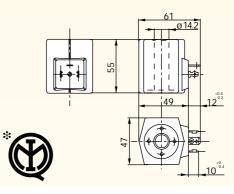
Coil manufactured from **class H** copper wire, moulded in thermoplastic:

- (polyester) with 30% glass fiber;

Features:

 Protection
 DIN 40050 = IP 65 with connector

 Connector
 DIN 43650 A - PG 9 or PG 11


 Frequency
 50/60 Hz

 Insulation class
 F (155°C)

Types available:

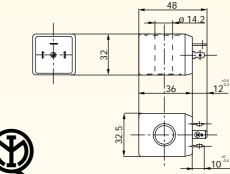
- * IMQ approved for standard voltages
- 1) Class F (155°C)
 •JB14 = 30 VA 14 W a.c. Service (55 VA Inrush)
 •ZB16 = 16 W d.c.

K coil

Coil manufactured from **class F** copper wire **(type KT09)**, moulded in thermoplastic:

- (polyammide) with 30% glass fiber;.

Features:


Protection	DIN 40050 = IP 65 with connector
Connector	DIN 43650 A - PG 9 or PG 11
Frequency	50 or 60 Hz
Insulation class	F (155°C)

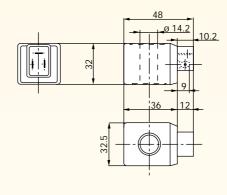
Types available:

- * IMQ approved for standard voltages
- 1) Class F (155°C)
 •KT09 = 12 VA 9 W a.c. Service (20 VA Inrush)
 •KP07 = 13 VA 7 W a.c. Service (22 VA Inrush)
 •KP10 = 10 W d.c.
- Class H (180°C)
 •KH09 = C.A.12 VA 9 W Service (20 VA Inrush);

Climate & Industrial Controls

Coil manufactured from class ${\bf F}$ copper wire, moulded in thermoplastic:

- (polyammide) with 30% glass fiber;


Features::

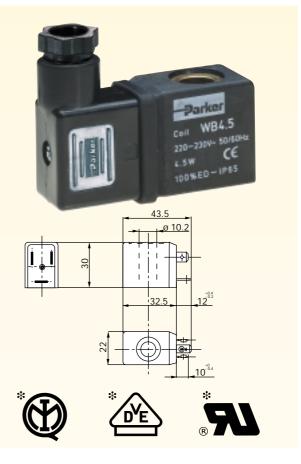
Protection	DIN 40050 = IP 54 with plug
Connector	Plug with special three-core cable
Frequency	50 or 60 Hz
Insulation class	F (155°C)

Types available:

- * IMQ approved for standard voltages
- 1) Class F (155°C)
 - •XT09 = 12 VA 9 W a.c. Service (20 VA Inrush) •XP07 = 13 VA - 7 W a.c. Service (22 VA - Inrush)

W coil

Coil manufactured from **class H** copper wire, moulded in thermoplastic:


- (polyester) with 30% glass fiber;

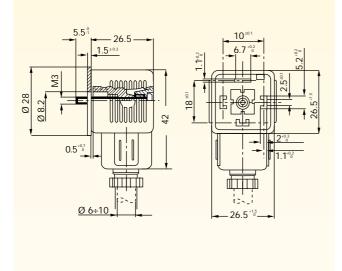
Features:

Protection	DIN 40050 = IP 65 with connector
Connector	DIN 43650 B - PG 9
Frequency	50/60 Hz
Insulation class	F (155°C)

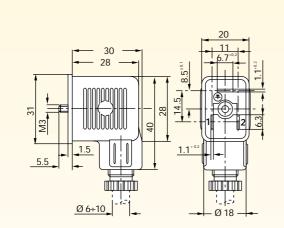
Types available:

- * IMQ approved for standard voltages
- 1) Class F (155°C)
 •WB4.5 = 7.5 VA 4.5 W a.c. Service (11 VA Inrush)
 •WB5.0 = 5 W d.c.
 - •WB8.0 = 11 VA 8 W a.c. Service (17 VA Inrush).

Coil Table


VALVE SERIES	JB14 JB16	KP07	КТ05 КТ06	KT09 KT10	WB4.5 WB5.0	XT09	XP07	YB09 YB12	YB14 YB16	YE09	ZB09 ZB12	ZB14 ZB16	ZH14 ZH16	KH09
120.4									•			•	•	
123	•							•			•	•	•	•
126								•			•	•		
128								•			•		•	
131				•		•								
131.4				•										
131.4G			•	•										
133								•		•	•		•	
133H								•			•		•	
133 CMV								•			•		•	
135													•	
136									•			•	•	
139								•			•		•	
140							•	•			•		•	
140.2								•			•		•	
141								•			•		•	
143									•			٠	•	
146								•	•		•	٠	•	
151								•			•		•	
153		•(1)							•			•	•	
156.2								•			•		٠	
158								٠			•		٠	
161.4				٠										
168.1								٠			•		•	
169.1									•			٠	٠	
173					•									
174					•									
179					•									

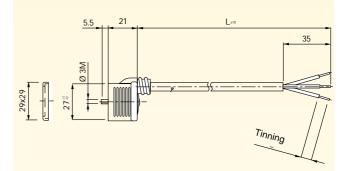
Notes: • Standard (1) For spare coil order ZB09-ZB12

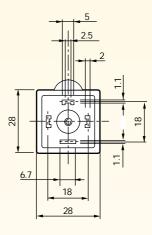


Solenoid valve accessories

Three pin Connector DIN 43650 A (Z, J, K)

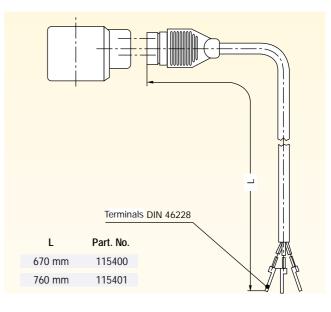
Three pin Connector DIN 43650 B (WB Coil)




SPECIFICATION: CONNECTOR DIN 43650

Nominal voltage	250 -/ 300V=
Max switch rating	16 A
Contact resistance	≤4 m Ohm
Contact width (max)	1,5 mm ²
Protection class	IP65 - DIN 40050
Insulation class	Gruppo C - VDE 0110
Gasket material	NBR (-40°C + 90°C)
Cable diameter	6 ÷ 8 8 ÷ 10
Gland nut	Pg 9 Pg 11

Climate & Industrial Controls


Connector with three core cable (Z, J, K Coil)

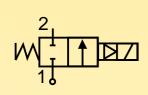
L ±10	Part. No.
500 mm	169110
1000 mm	169150

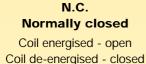
Special plug with three core cable (X Coil)

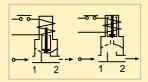
Parker Hannifin S.p.A. via E. Fermi, 5 20060 Gessate (Milano) - Italy

Contents

			pages
Series	123	NC	40-41
Series	131.4	NC	42-43
Series	133	NC	44-45
Series	133 CMV	NC	46-47
Series	136	NO	48-49
Series	139	UNIVERSAL	50-51
Series	141	NC	52-53
Series	143	NO	54-55
Series	146	NC	56-57
Series	151	NO	58-59
Series	168.1	NC	60-61
Series	169.1	NO	62-63
Series	173	NC	64-65
Series	174	NC	66-67
Series	179	NC	68-69


NO = normally open


NC = normally closed


AFF AFF <th>FITTINGS</th> <th>G = 1/8"</th> <th></th> <th>G = 1/4"</th> <th> 4"</th> <th>G=3/8″</th> <th>8"</th> <th>G=1/2"</th> <th></th> <th>G=3/4"</th> <th></th> <th>G=1 "</th> <th>G=1</th> <th>G=1 1/4"</th> <th>G=1</th> <th>G=1 1/2"</th> <th>G=2"</th> <th>ž</th> <th>G=2 1/2"</th> <th>1/2"</th> <th>G=3"</th> <th>3"</th>	FITTINGS	G = 1/8"		G = 1/4"	4"	G=3/8″	8"	G=1/2"		G=3/4"		G=1 "	G=1	G=1 1/4"	G=1	G=1 1/2"	G=2"	ž	G=2 1/2"	1/2"	G=3"	3"
ac. dc. dc. <th></th> <th>r =dx</th> <th></th> <th>= dx</th> <th>.4/</th> <th></th>		r =dx		= dx	.4/																	
Image: Second	ТҮРЕ	a.c. d [bar] [b	d.c. Dar] [a.c. bar] [a.c. bar] [l	d.c. a bar] [b	l.c. d. ar][bi				c. d.c. r] [bar			a.c. [bar]	d.c. [bar]		d.c. [bar]	a.c. [bar]			d.c. [bar]
4 8 1-5 3-16 </th <th>Series 123</th> <th></th> <th></th> <th></th> <th></th> <th>പ</th> <th>-</th> <th></th>	Series 123					പ	-															
CMV 1 2 10 1	Series 131.4				1÷6*																	
CMV	Series 133													10	10	10	10	10				
	Series 133 CMV								-				വ	വ	വ	ъ	ъ	വ	10	10	10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Series 136			5,5	5,5																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Series 139	7÷10 7			1÷7																	
$ \begin{bmatrix} 1 & 1 & 1 \\ 10^{1} & 10^{1} & 1 \\ 10^{1} & 10^{1} & 1 \\ 10^{1} & 10^{1} & 1 \\ 10^{1} & 10^{1} & 1 \\ 10^{1} & 10^{1} & 1 $	Series 141	10÷15 10)÷15	7÷10	7÷10																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Series 143													10	10	10	10	10				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Series 146	10÷15 8	÷12	8÷15 、	1÷12																	
10+20 6+15 10 16	Series 151		-	12÷22 1	2÷22																	
.1 16 16 16 16 16 16 16 10+20 6+15 10 6 10 10 10 10 10+10 7+10 7+10 7+10 7+10 7+10 7+10	Series 168.1																					
15 15 15 15 10÷20 6÷15 10 6 6 7÷10 7÷10 7÷10 7÷10	Series 169.1					16																
10÷20 6÷15 10 7÷10 7÷10	Series 173					15			5													
	Series 174	10÷20 6	÷-15	10	9																	
	Series 179	7÷10 7.	÷10																			
	τ	ie numb Tr	iers ir Je co	[bar] lumns	in the refer	to the	indica type c	ite the	M.O.F gs and	P.D.	alues er sup <u>i</u>	(maxin ply; the	num o rows	perati refer to	ng pr∉ o the ∖	essure /alve s	eries.	ential	Ċ.			
The numbers in [bar] in the table indicate the M.O.P.D. values (maximum operating pressure differential). The columns refer to the type of fittings and power supply; the rows refer to the valve series.						Ite	ms w	ith ast	erisk	(*) rei	fer to F	R type	fitting	s.								

2/2 way - Normally Closed - Diaphragm assisted lift

Series 123

General description:

PARKER series 123 solenoid valves are diaphragm assisted lift and do not require a minimum differential pressure to operate. They are used for general applications with media such as: water, air, light oils (2°E) and inert gases, provided they are compatible with the construction materials used.

Series 123 valves are normally closed.

Temperatures:

The working temperatu	re for media is:
maximum	+140°C
minimum	-10°C
The maximum ambient	temperature is:
 with class "F" coils 	+50°C

• with class "H" coils +80°C

Application:

Series 123 solenoid valves are ideal for automatic control of media for a wide range of uses which require zero or very low differential pressures.

Some examples of applications are:

- thermohydraulic systems;
- industrial dishwashers;
- hydrocleaners;
- ·food industry equipment;
- instruments;
- •metal smelting plants;
- •polyurethane systems;
- closed circuits;

100%23-1765

80 t-10 bo ESELT SIDE

- environmentally-friendly systems;
- •suction pad manipulators.

In vacuum applications series 123 valves can be used in a range from

10⁻³ to 10⁺³ torr. They may be used with gases with pressures over 2,000 mm of water column.

Fittings: G = 3/8" - 1"

Coils:

For series 123 valves class "F" coils (155°C) are available, encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB, JB).

For models I and A, class "H" coils (180°C) are also available, encapsulated in thermoplastic containing 40% glass fiber (type: ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

± 10% for A.C. power supply and

+ 10% -5% for D.C.

The "Z", "Y", "J" coils can be used on a.c. with frequency 50/60 Hz (dualfrequency).

The "Z" and "J" coils have Faston terminals for DIN 43650A connectors with protection to IP65.

. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

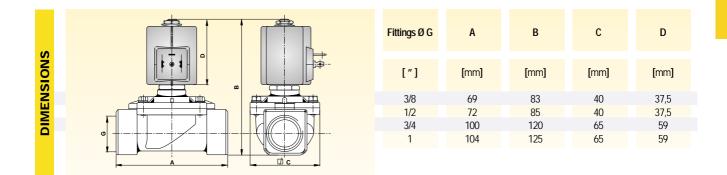
24V/50-60Hz, 115V/50-60Hz, 220-230V/50-60Hz, 240V/50-60Hz

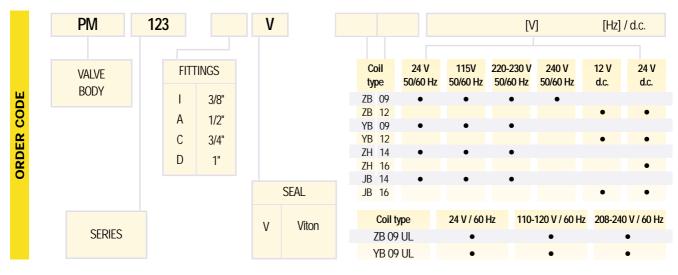
- **ZB 12** 12V DC, 24V DC YB 09 220-230V/50-60Hz
- JB 14 220-230V/50-60Hz JB 16 24V-DC

• For the coils: **ZB 09** 220-230V/50-60Hz, 240V/50-60Hz YB 09 220-230V/50-60Hz

ZB 09

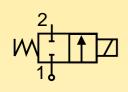
Models VE 123 I and 123 A, are ULapproved for coil, voltages: 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

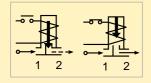

• Coil certification: ZB 09


LS	Valve body:	OT58 UNI 5705 brass stamping	CAL ES	Coil f	ype]	Pov [V		Insulat. class
ERIA	 Seals: Enclosing tube: 	Viton AISI 304 stainless steel		A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
F	Plunger:	AISI 430 F stainless steel	EAT	ZB 09	ZB 12	9	12	F
MA	 Spring: 	AISI 302 stainless steel		YB 09	YB 12	9	12	F
	 Shading ring: 	Copper		ZH 14	ZH 16	14	16	Н
				JB 14	JB 16	14	16	F

z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max di pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
CATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
E.	3/8	123 I	13	2,40	0	5	1	Z - Y	0,510	1
ECI	1/2	123 A	13	2,40	0	5	1	Z - Y	0,540	1
H	3/4	123 C	20	6,00	0	3	1	J	1,230	1
SI	1	123 D	25	7,00	0	3	1	J	1,300	1

Note:


1) NP (Nominal pressure): 16 bar.


2/2 way - Normally Closed - Direct operated

Series **131.4**

Coil energised - open Coil de-energised - closed

General description:

PARKER series **131.4** solenoid valves are direct operated.

They are used for general applications with media such as inert gases and light oils (2°E).

Series 131.4 valves are normally closed.

Temperatures:

The working temperature for media is: maximum +140°C minimum -10°C The maximum ambient temperature is: +50°C

Application:

Series **131.4** solenoid valves are used for the automatic control of media where low flow rates are required.

Some examples of applications are: • welding machines with controlled

- atmosphere;diesel oil burners;
- dieser off burriers
 gas analysers;
- gas analysers;
 fumes analysers;
- distribution of light oils;
- measurement and control instruments;
- lubrication systems.

Coils:

For series **131.4** valves class **"F"** coils **(155°C)**, encapsulated in thermoplastic containing 30% glass fiber (type KT), are available.

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "K" coil can be used on a.c. with frequency 50 Hz or 60 Hz (single frequency) and has Faston terminals for **DIN 43650A** connector with protection to **IP65**.

Installation:

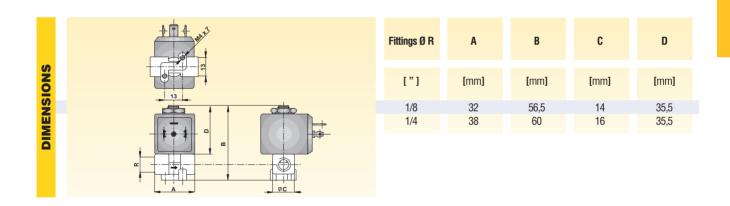
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body. The valve body has 2 mounting holes diam. M4 x 7 with centre distance 13×13 .

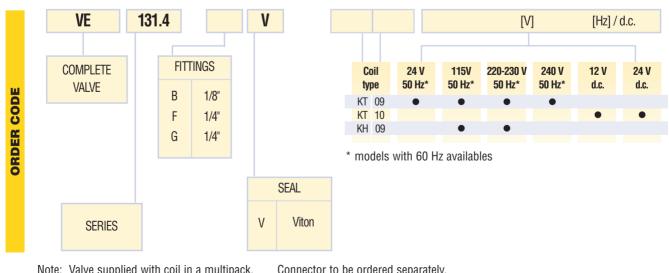
Approvals:

Coil certification: KH 09 24V/50Hz 115V/50Hz 230V/50Hz KT 09 115V/50Hz 220-230V/50Hz

Fittings: Rp = 1/8" - 1/4"

for: inert gases - light oils (2°E)

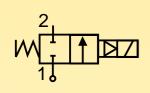

VLS	• Valve body: • Seals:	OT58 UNI 5705 brass stamping Viton	CAL	Coil 1 [ype]	Pov [V		Insulat. class
ATERIA	Enclosing tube: Plunger:	OT58 UNI 5705 brass stamping Steel 9SMn Pb23 UNI 5105 nickel plated	ECTRIC	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
M.	 Spring: Shading ring: 	AISI 302 SS Copper		KT 09 KH 09	KT 10 -	9 9	10 -	F


SS = stainless steel

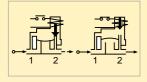
z	Fittings Ø Rp	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dif pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
0	1/8	131.4 BV	2,8	0,174	0	8	6	K	0,200	1
<u>E</u>	1/4	131.4 FV	2,8	0,174	0	8	6	K	0,220	1
N	1/4	131.4 GV	4,0	0,318	0	2	1	К	1,220	1
2										

S

1) NP (nominal pressure): 10 bar Note:



Connector to be ordered separately.


2/2 way - Normally Closed - Diaphragm pilot operated

Series 133

N.C. Normally closed

Coil energised - open Coil de-energised - closed

General description:

PARKER series 133 solenoid valves are diaphragm pilot operated and require a minimum differential pressure to operate. They are used for applications with high flow rates and media such as water, light oils (2°E) and others, provided they are compatible with the construction materials used.

Series 133 valves are normally closed.

Temperatures:

The working temperature for media is: maximum +90°C

minimum -10°C

with NBR seals (Buna N). On request seals in Viton are available, for fittings \leq **G** 1" for maximum working temperature +140°C.

The maximum ambient temperature is:

- with class "F" coils +50°C
- with class "H" coils +80°C

Application:

Series 133 solenoid valves are ideal for the automatic control of media in a wide range of applications such as:

- · thermohydraulic systems;
- · autoclaves;
- · cooling of machine tools;
- industrial washing plants;
- evaporation towers;
- hospital equipment;
- irrigation systems;
- fire-fighting systems;
- wood-working machines;
- marble-working machines;
- molding machines;
- · hygiene-health equipment.

For air and inert gases they can be used for low operating frequencies.

Fittings: G = 3/8" - 2"

Coils:

For series 133 valves class "F" coils (155°C), encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB), are available.

Class "H" Coils are also available (180°C), encapsulated in thermoplastic containing 40% glass fiber (type: ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency 50/60 Hz (dualfrequency).

The "Z" coils have Faston terminals for DIN 43650A connectors with protection to IP65.

The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

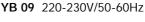
Series 133 solenoid valves are also available in a watertight version for applications where the conditions of humidity are particularly critical (type: YE 09).

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

Coil certification:


ZB 09 24V/50-60Hz, 115V/50-60Hz, 220-230V/50-60Hz, 240V/50-60Hz

ZB 12 12VDC, 24VDC

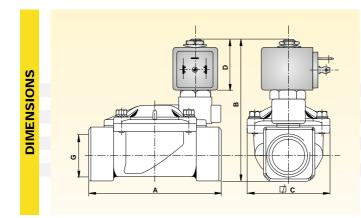
YB 09 220-230V/50-60Hz

ZB 09 220-230V/50-60Hz, 240V/50-60Hz

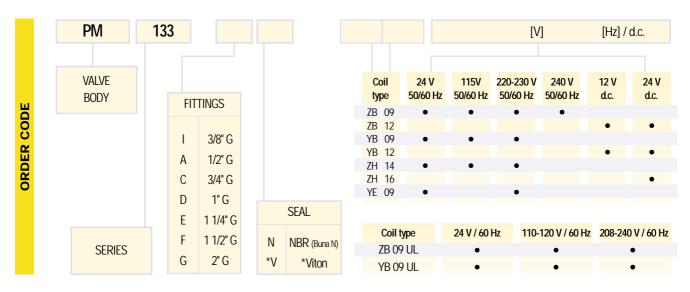
208-240V/60Hz

• Models are 133IN,133AN ZB 09 coil: 24V/60Hz, 110-120V/60Hz,

Series 133

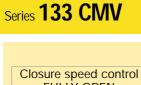

for: water - light oils (2°E)

ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping NBR (Buna N) - Viton	RICAL JRES	Coil t	уре]	Pov [V		Insulat. class
	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430 F stainless steel	ECT	A.C.(~) ZB 09	D.C.(=) ZB 12	A.C.(~) 9	D.C.(=) 12	F
Z	Spring: Shading ring:	AISI 302 stainless steel Copper	<u>ц</u> г	YB 09 ZH 14 YE 09	YB 12 ZH 16	9 14 9	12 16 -	F H E

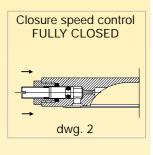

z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dit pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
<u></u>	3/8	133 I	13	3,00	0,1	20	20	Z - Y	0,550	1
Ē	1/2	133 A	13	3,00	0,1	20	20	Z - Y	0,580	1
U	3/4	133 C	20	8,40	0,1	20	20	Z - Y	1,020	1
SPE	1	133 D	25	9,60	0,1	20	20	Z - Y	1,080	1
S	1 1/4	133.2 E	35	25,20	0,1	10	10	Z - Y	3,150	1 - 2
	1 1/2	133.2 F	40	30,00	0,1	10	10	Z - Y	2,900	1 - 2
	2	133 G	50	37,20	0,1	10	10	Z - Y	4,300	1 - 2

Note: 1) NP (nominal pressure): 25 bar (from 1 1/4 to 3" PN 16 bar).

2) Slow closure version.




Fittings ØG-NPT	A	В	С	D
["]	[mm]	[mm]	[mm]	[mm]
3/8 G	69,0	92,5	40,0	37,5
1/2 G	72,0	94,5	40,0	37,5
3/4 G	100,0	100,0	65,0	37,5
1 G	104,0	105,5	65,0	37,5
1 1/4 G	145,0	127,0	102,0	37,5
1 1/2 G	145,0	127,0	102,0	37,5
2 G	173,0	141,0	118,0	37,5



Note: Valve supplied with body (PM) and coil separate. Connector to be ordered separately. * Optional Viton for fittings up to 1".

2/2 way - Normally Closed - Diaphragm pilot operated

General description:

PARKER series **133CMV** solenoid valves are diaphragm pilot operated and require a minimum differential pressure to operate. They are used for applications with high flow rates and media such as **water**, **light oils (2°E) and others**, provided they are compatible with the construction materials used.

Series 133 valves are normally closed.

Temperatures:

The working temperature for media is: maximum +90°C minimum -10°C

with NBR seals (Buna N). On request seals in Viton are available, for fittings $\leq G 1''$ for maximum working temperature +140°C.

The maximum ambient temperature is: •with class "F" coils +50°C

•with class "H" coils +80°C

Manual control:

The manual control is used to open the valve without supplying voltage to the coil. The control consists of a slotted-head screw for a screwdriver with two possible positions:

CLOSED valve closed OPEN valve open In the closed position the valve functions normally when coil is energised.

Fittings: G = 3/4" - 2"

Coils:

For series **133** valves class **"F"** coils **(155°C)**, encapsulated in thermoplastic containing 30% glass fiber (types: ZB), are available.

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and +10% - 5% for D.C.

The coils can be used on a.c. with frequency of 50/60HZ (dualfrequency).

The coils have Faston terminals for **DIN 43650A** connector with protection to **IP65**.

Closure speed control:

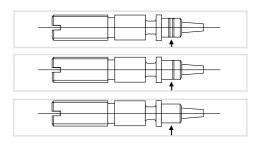
The closure times of the models 133 CNCMV, 133 DNCMV, 133.2 ENCMV, 133.2 FNCMV, 133 GNCMV can be changed by means of the adjusting screw (dwgs. 1 and 2). The latter, by acting as a throttle on the inlet equalisation (pilot) hole of the valve, slows down the closure speed of the valve, thus reducing water hammer. The regulation range is from:

SCREW FULLY OPEN

dwg. 1 max. closure speed SCREW FULLY CLOSED

dwg. 2 valve always open, i.e. the pilot hole of the valve closes completely.

WARNING: the adjusting screws of the various models differ on the conical seat: IDENTIFICATION

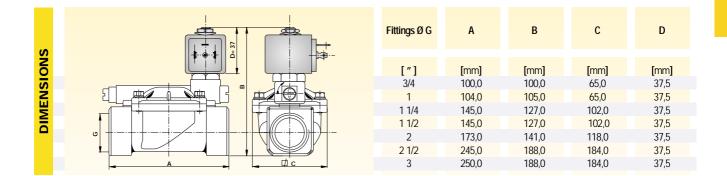

2 groove = series C 3/4" series D 1"

1 groove = series .2E 1 1/4" and series .2F 1 1/2"

no groove = series G 2" (see down).

Climate & Industrial Controls

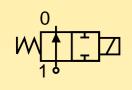
for: water - light oils (2°E)


LS LS	Valve body:	OT58 UNI 5705 brass stamping	AL	Coil t [51	Pow [W		Insulat. class
TERIAI	Seals: Enclosing tube: Plunger:	NBR (Buna N) - Viton AISI 304 stainless steel AISI 430 F stainless steel	ECTRIC,	· · ·	D.C.(=)	A.C.(~)	D.C.(=)	
MA ⁻	Spring:	AISI 302 stainless steel	ШЩ	ZB 09	ZB 12	9	12	F
2	Shading ring:	Copper	<u> </u>	YB 09 ZH 14	YB 12 ZH 16	14	12 16	H
	- Shaung Ing.	Сорреі		YE 09	-	9	-	E

	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dit pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
CATI	3/4	133 C	20	8,40	0,1	10	10	Z - Y	1,020	1
U	1	133 D	25	9,60	0,1	10	10	Z - Y	1,080	1
Ξ	1 1/4	133.2 E	35	25,20	0,1	5	5	Z - Y	3,150	1
U	1 1/2	133.2 F	40	30,00	0,1	5	5	Z - Y	2,900	1
PE	2	133 G	50	37,20	0,1	5	5	Z - Y	4,300	2
S	2 1/2	133 L	65	66,00	0,2	10	10	Z -Y	13,600	2
	3	133 M	75	80,00	0,2	10	10	Z - Y	11,900	2

1) NP (nominal pressure): 25 bar.

2) Valve supplied with mechanical part (M.P.) and coil separate.



47

2/2 way - Normally Open - Direct operated

Series 136

General description:

PARKER series 136 solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for general applications with media such as water, air, light oils (2°E) and inert gases, provided they are compatible with the construction materials used. Series 136 solenoid valves are normally open with inlet and outlet in line.

Temperatures:

The working temperature for media is: maximum +140°C minimum -10°C The maximum ambient temperature is: with class "F" coils +50°C
with class "H" coils +80°C

Fittings: G = 1/4''

Coils:

For series 136 valves class "F" coils (155°C), encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB), and class "H" coils (180°C), encapsulated in thermoplastic containing 40% glass fiber (type: ZH), are available.

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency of 50/60Hz (dualfrequency). The "Z" coils have Faston terminals for DIN 43650A connectors with protection to IP65

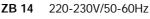
The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Application:

Series 136 solenoid valves are ideal for the automatic control of media for the following applications:

- •generating sets;
- •water purification plants;
- •sterilisers;
- air dehumidifiers;
- industrial refrigerators;
- •distribution of light oils.

For air applications the maximum differential pressure (MOPD) can be increased by 25%.


Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

- Coil certification:
- ZB 14 24V/50-60Hz, 115V/50-60Hz
 - 220-230V/50-60Hz
- ZB 16 12V DC, 24V DC
- YB 14 only voltage 220V/50-60Hz 24V DC
- YB 16 ∕₀⋎⋼
 - For the coil:

Œ

160Hz

Coil

type

[]

Z - Y

Weight

[Kg]

0,36

Notes

[]

1

ALS	 Valve body: Seals: 	OT58 UNI 5705 brass stamping Viton	ICAL RES	Coil f	type]	Power [W]		Insulat. class
TERI	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430 F stainless steel	ECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Spring:	AISI 302 stainless steel		ZB 14	ZB 16	14	16	F
	Shading ring:	Copper		ZH 14	ZH 16	14	16	Н
	5 5			YB 14	YB 16	14	16	F

Minimum

pressure

[bar]

0

Max differential

in D.C.(=)

[bar]

5,5

pressure (M.O.P.D.)

in A.C.(~)

[bar]

5,5

SPECIFICATION

Fittings ØG

["]

1/4

Note: 1) NP (nominal pressure): 64 bar.

Valve

type

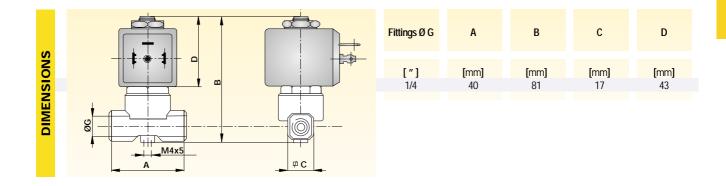
[]

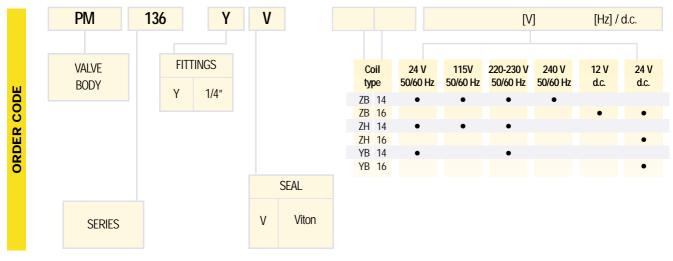
136 Y

Nominal

orifice Ø

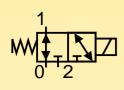
[mm]

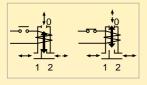

3


Flow

coefficient Kv

[m³/h]


0,240



3/2 way - Universal - Direct operated

Series 139

Universal Solenoid valve

General description:

PARKER series 139 solenoid valves are universal and may be used as normally closed, normally open and for bypass and mixer applications depending on the flow pattern chosen.

They are used for general applications with media such as water, air, light oils (2°E) and inert gases, provided they are compatible with the construction materials used.

Since they are direct-acting valves, they do not require a minimum differential pressure and function within the maximum differential pressure values (MOPD) indicated in the specification table.

The series 139 seal bubble tight.

Temperatures:

The working temperature for media is:							
maximum	+140°C						
minimum	-10°C						
The maximum ambient temperate	ure is:						
 with class "F" coils 	+50°C						
 with class "H" coils 	+80°C						

Application:

Series 139 solenoid valves are used in applications which require actuation and automatic discharge of moving systems. They enable the flow to be diverted towards a single outlet or to select one flow from two.

Some typical application examples:

- •Pneumatic systems;
- •Air compressors:
- •Pilot valves:
- Batch systems;
- •Paper and board manufacturing machines;
- Hydrocleaners;

(I) Climate & Industrial Controls

- •Hygiene-health systems;
- Instruments;

• Dryers; •Automatic dispensers.

Fittings: G = 1/8" - 1/4"

Coils:

For series 139 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB).

Class "H"coils (180°C) are also available encapsulated in thermoplastic containing 40% glass fiber (type: ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency of 50/60Hz (dualfrequency). The "Z" coils have Faston terminals for DIN 43650A connectors with protection to IP65.

The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body. The valve body has a M4 x 8 mounting hole.

Approvals:

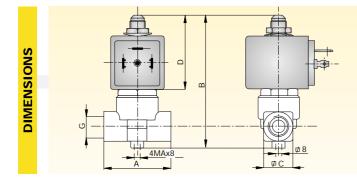
Coil certification: **ZB 09** 24V/50-60Hz, 115V/50-60Hz 220-230V/50-60Hz, 240V/50-60Hz ZB 12 12V DC, 24V DC YB 09 220-230V/50-60Hz

• For the coils: **ZB 09** 220-230V/50-60Hz, 240V/50-60Hz

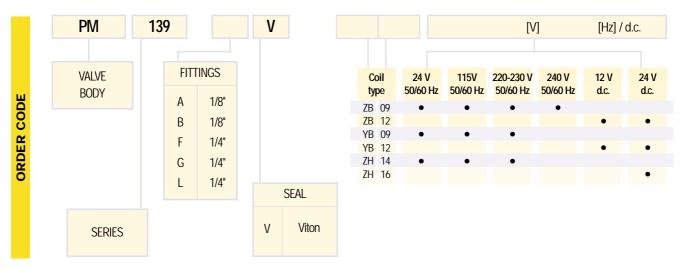
YB 09 220-230V/50-60Hz

JUL Recognized Comp. Mark for coils:

- **ZB 09** 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz
- YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

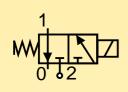

ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping Viton	ICAL RES	Coil f	type]	Pow [V		Insulat. class
MATERIAI	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430 F stainless steel	ECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
ž	Spring:	AISI 302 stainless steel		ZB 09	ZB 12	9	12	F
	Shading ring:	Copper		YB 09 ZH 14	YB 12 ZH 16	9 14	12 16	F

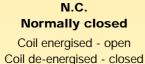
z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dif pressure (N	fferential 1.O.P.D.)	Coil type	Weight	Notes
	["] 1/8	[] 139 A	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
CIFIC	1/8 1/8 1/4	139 A 139 B 139 F	1,5 (1,5)* 2,0 (2,0)* 2,0 (2,0)*	0,07 0,12 0,12	0	10 7 7	10 7 7	Z - Y Z - Y Z - Y	0,360 0,360 0,360	1
SPE(1/4 1/4 1/4	139 G 139 L	2,5 (2,5)* 2,5 (2,5)* 3,5 (2,5)*	0,12 0,17 0,30	0	4 1	4 1	Z - Y Z - Y	0,360 0,360 0,360	1

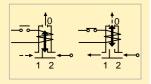

Note:

1) NP (nominal pressure): 64 bar.

2) * Discharge diameter.




Fittings Ø G	A	В	С	D
["]	[mm]	[mm]	[mm]	[mm]
1/8	40,0	82,5	18	45,5
1/4	40,0	82,5	18	45,5



3/2 way - Normally Closed - Direct operated

Series 141

General description:

PARKER series 141 solenoid valves are direct operated and do not require a minimum differential pressure to operate.

They are used for general applications with media such as water, air, light oils (2°E) and inert gases, provided they are compatible with the construction materials used.

The series 141 valves seal bubble tight. Series 141 valves are normally closed.

Temperatures:

The working temperature for media is:						
maximum	+140°C					
minimum	-10°C					
The maximum ambient temperature is:						
 with class "F" coils 	+50°C					

 with class "F" coils • with class "H" coils +80°C

Application:

Series 141 solenoid valves are used in applications which require actuation and automatic discharge of moving systems in the following applications:

- •Sterilisers:
- •Espresso coffee machines;
- •Air compressors;
- •Diesel oil burners:
- Pilot valves:
- •Polyurethane plants;
- •Water treatment plants.

Fittings: G = 1/8" - 1/4"

Coils:

For series 141 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB).

Class "H" coils (180°C) are also available encapsulated in thermoplastic material containing 40% glass fiber (type: ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency of 50/60 Hz (dualfrequency). The "Z" coils have Faston terminals for DIN 43650A connectors with protection to IP65.

The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body. The valve body has a M4 x 8 mounting hole.

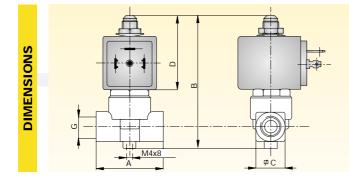
Approvals:

Coil certification: **ZB 09** 24V/50-60Hz, 115V/50-60Hz 220-230V/50-60Hz, 240V/50-60Hz 12V DC, 24V DC ZB 12 220-230V/50-60Hz YB 09

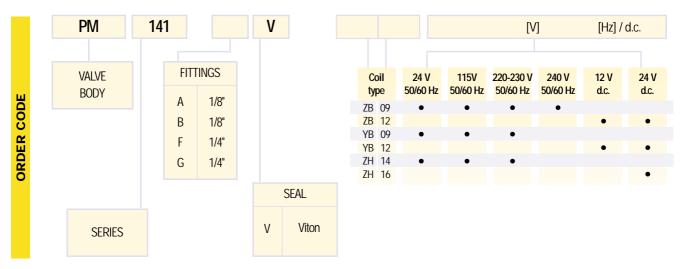
For the coils: 220-230V/50-60Hz, 240V/50-60Hz YB 09 220-230V/50-60Hz

. UL Recognized Comp. Mark for coils:

- ZB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz
- YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

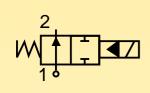

ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping Viton	CAL tes	Coil 1 [type]	Power [W]		Insulat. class
MATERIA	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430 F stainless steel	ECTRIC EATUR	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
ž	 Spring: 	AISI 302 stainless steel		ZB 09	ZB 12	9	12	F
	Shading ring:	Copper		YB 09	YB 12	9	12	F
				ZH 14	ZH 16	14	16	Н

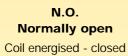
z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max di pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
U	1/8	141 A	1,5 (1,5)*	0,07	0	15	15	Z - Y	0,360	1
Ē.	1/8	141 B	2,0 (2,5)*	0,12	0	10	10	Z - Y	0,360	1
U	1/4	141 F	2,0 (2,5)*	0,12	0	10	10	Z - Y	0,360	1
SPE	1/4	141 G	2,5 (2,5)*	0,17	0	7	7	Z - Y	0,360	1

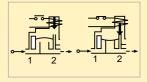

Note:

1) NP (nominal pressure): 64 bar.

2) * Exhaust diameter.




Fittings Ø G	A	В	С	D
["]	[mm]	[mm]	[mm]	[mm]
1/8	40	82,5	18	45,5
1/4	40	82,5	18	45,5


2/2 way - Normally Open - Diaphragm pilot operated

Series 143

Coil de-energised - open

General description:

PARKER series 143 solenoid valves are diaphragm pilot operated and require a minimum differential pressure to operate. They are used for general applications with high flow rates and media such as water, light oils (2°E) and others, provided they are compatible with the construction materials used.

Series 143 valves are normally open.

Temperatures:

The working temperature for media is: maximum +90°C minimum -10°C

with NBR seals (Buna N).

On request seals in Viton are available for fittings \leq **G 1**" and maximum working temperature + 140°C.

The maximum ambient temperature is;

 with class "F" coils 	+50°C
 with class "H" coils 	+80°C

Application:

Series 143 solenoid valves are ideal for the automatic control of media in a wide range of applications such as:

- Thermohydraulic systems;
- •Air compressors;
- ·Washing plants;
- •Hvdrocleaners.

For air and inert gases they can be used for low operating frequencies.

Fittings: G = 3/8" - 2"

Coils:

For series 143 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB).

Class "H" coils (180°C) are also available encapsulated in thermoplastic containing 40% glass fiber (type: ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and +10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency of 50/60Hz (dualfrequency). The "Z" coils have Faston terminals for DIN 43650A connector with protection to IP65. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

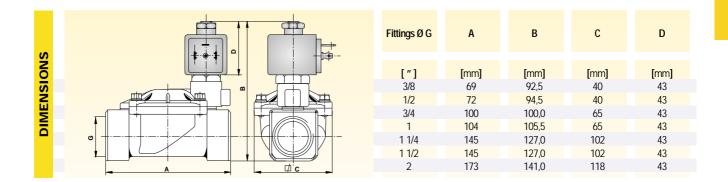
Installation:

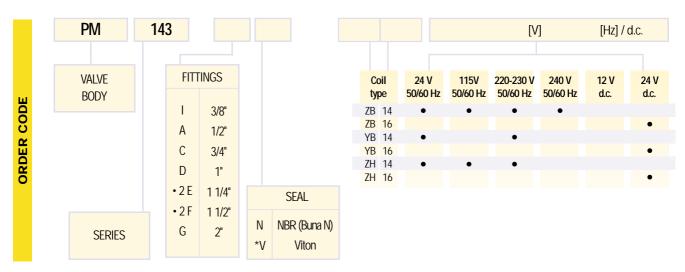
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

• Coil certification : 24V/50-60Hz, 115V/50-60Hz 220-230V/50-60Hz ZB 16 12V DC, 24V DC YB 14 220-230V/50-60Hz YB 16 24V DC

• For the coil: 220-230V/50-60Hz

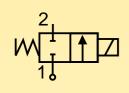



for: water - light oils (2°E)

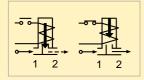
ALS	 Valve body: Seals: 	OT58 UNI 5705 brass stamping NBR (Buna N) - Viton	rical RES	Coil t [type]	Pow [V		Insulat. class
TERI	 Enclosing tube: Plunger: 	AISI 304 stainless steel AISI 430 F stainless steel	ECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MA	Spring:	AISI 302 stainless steel		ZB 14	ZB 16	14	16	F
	 Shading ring: 	Copper		YB 14	YB 16	14	16	F
	5 5	••		ZH 14	ZH 16	14	16	Н

z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dit pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ATION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
U	3/8	143 I	13	3,00	0,1	20	20	Z - Y	0,560	1
Ξ	1/2	143 A	13	3,00	0,1	20	20	Z - Y	0,590	1
U	3/4	143 C	20	8,40	0,1	20	20	Z - Y	1,050	1
Ĕ	1	143 D	25	9,60	0,1	20	20	Z - Y	1,110	1
S	1 1/4	143.2 E	35	25,20	0,1	10	10	Z - Y	3,120	1
	1 1/2	143.2 F	40	30,00	0,1	10	10	Z - Y	2,870	1
	2	143 G	50	37,20	0,1	10	10	Z - Y	4,260	1

Note: 1) NP (nominal pressure): 25 bar (from 1 1/4" to 2" PN 16 bar).



Note: Valve supplied with body (PM) and coil separate. Connector to be ordered separately. * Optional Viton for fitting up to 1".


2/2 way - Normally Closed - Direct operated

Series 146

N.C. Normally closed

Coil energised - open Coil de-energised - closed

General description:

PARKER series **146** solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for general applications with media such as **water**, **air**, **light oils (2°E) and inert gases**, provided they are compatible with the construction materials used. Series **146** valves are **normally closed**.

Temperatures:

The working temperature for medi	a is:
maximum	+140°C
minimum	-10°C
The maximum ambient temperatu	re is:
with class "F" coils	+50°C
with class "H" coils	+80°C

Application:

Series **146** solenoid valves are ideal for the automatic control of media in a wide range of applications such as:

- Burglar alarm systems;
- Sterilisers;
- •Espresso coffee machines;
- •Diesel oil burners;
- Shoe manufacturing machinery;
- •Ceramic plants;
- •Air dryers;
- Automatic dispensers;
- Industrial washing machines;
- •Water massage systems;
- •Floor washing machines;
- •Welding systems;
- Machines for plastics;Humidifiers.

For use with air the maximum differential pressure (MOPD) may be increased by 25%.

Fittings: G = 1/8" - 1/4"

Coils:

For series **146** valves class **"F"** coils **(155°C)**, encapsulated in thermoplastic containing 30% glass fiber (type ZB, YB), and class **"H"** coils **(180°C)**, encapsulated in thermoplastic containing 40% glass fiber (type: ZH), are available.

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency of 50/60Hz (dualfrequency). The "Z" coils have Faston terminals for **DIN 43650A** connectors with protection to **IP65**. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to **IP67**.

Installation:

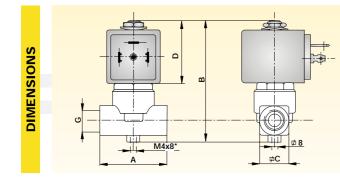
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

- **b**...
- Coil certification:
- ZB 09 24V/50-60Hz, 115V/50-60Hz, 220-230V/50-60Hz, 240V/50-60Hz ZB 12 12V DC, 24V DC ZB 14 24V/50-60Hz, 115V/50-60Hz,
- 220-230V/50-60Hz,
- **ZB 16** 24V DC
- **YB 09** 220-230V/50-60Hz
- YB 14 only voltage 220/50-60Hz
- **YB 16** 24V DC
- For the coils:
- ZB 09 220-230V/50-60Hz, 240V/50-60Hz
- **ZB 14** 220-230V/50-60Hz
- **YB 09** 220-230V/50-60Hz
- For the model VE 146.3 ABV with coil
- ZH 14 with voltage 220-230V/50-60Hz
- UL Recognized Comp. Mark for coils:
- **ZB 09** 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz
- **YB 09** 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

Special versions:

On request and for large orders, the series **146** valves can be fitted with quick connect fittings such as **Prestolock** cartridge.



S	• Valve body:	OT58 UNI 5705 brass stamping	AL S	Coil t [type]	Pow [V		Insulat. class
RIAL	Seals: Enclosing tube:	Viton AISI 304 stainless steel		A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
Ē	 Enclosing tube: Plunger: 	AISI 304 Stainless steel	ATI	ZB 09	ZB 12	9	12	F
MAT	Spring:	AISI 302 stainless steel		ZB*14 YB 09	ZB*16 YB 12	14 9	16 12	F
	 Shading ring: 	Copper		YB*14	YB*16	14	16	F
				ZH*14	ZH*16	14	16	Н

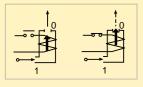
z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max di pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
U	1/8	146 F	2,5	0,197	0	15	12	Z - Y	0,340	1
E.	1/8	146 H	3,0	0,270	0	10	8	Z - Y	0,340	1
U	1/4	146 W	2,5	0,197	0	15	12	Z - Y	0,340	1
H	1/4	146 Y	3,0	0,270	0	10	8	Z - Y	0,340	1
SP	1/4	146.3 K	4,5	0,527	0	10	3	Z *- Y*	0,340	1
	1/4	146.3 AB	6,0	0,750	0	8	1	Z* - Y*	0,340	1

Note: 1) NP (nominal pressure): 64 bar

See specification table.


Fittings Ø G	A	В	С	D
["]	[mm]	[mm]	[mm]	[mm]
*1/8	40,0	74,5	18	37,5
1/4	40,0	74,5	18	37,5
*1/4	40,0	74,5	18	37,5

^{*} excluded mod. 146.3K - 146.3AB


	PM	146		V					[\	/]	[Hz] /	d.c.
	VALVE	FITT	INGS			Coil	24 V	115V	<mark>220-230 V</mark>	240 V	12 V	24 V
	BODY	F	1/8"			type	50/60 Hz	50/60 Hz	50/60 Hz	50/60 Hz	d.c.	d.c.
						ZB 09	٠	٠	٠	٠		
D		Н	1/8"			ZB 12					•	•
0		W	1/4"			ZB 14	•	•	•	•		
ORDER CODE						ZB 16						•
Ш		Y	1/4"			YB 09	•	•	•			
0		•3K	1/4"			YB 12					•	•
Ö						YB 14	•		•			•
		•3AB	1/4"			YB 16 ZH 14	•	•	•			•
						 ZH 14 ZH 16	•	•	•			•
					SEAL	211 10						•
						0.11		041440	140	100 1/ / 011-	200 040	
		SERIES V		V	Viton	Coil t		24 V / 60	HZ 110	-120 V / 60 Hz	208-240	J V / 60 HZ
	SERIES			V	VILON	ZB 09	UL	٠		٠		•
					YB 09	UL	•		•		•	

2/2 way - Normally open - Direct operated

Series 151

N.O. Normally open Coil energised - closed Coil de-energised - open

General description:

PARKER series 151 solenoid valves have direct action and do not require a minimum differential pressure to operate.

They are used for general applications with media such as water, air, light oils (2° E) and inert gases, provided they the are compatible with the costruction materials used. Series 151 valves are normally open with connections at 90° on valve body (inlet) and enclosing tube (outlet).

Temperatures:

The working temperature for med	ia is:
maximum	+140°C
minimum	-10°C
The maximum ambient temperatu	re is:
with class "F" coils	+50°C
with class "H" coils	+80°C

Application:

Series 151 solenoid valves are ideal for the automatic control of media in the following applications:

- ·Air compressors;
- •Pneumatic systems;
- Textile machines;
- ·Water treatment plants;
- •Diesel oil burners.

For air applications the maximum differential pressure (MOPD) may be increased by 25%.

Fittings: G = 1/4''

Coils:

For series 151 valves class "F" coils (155°C), encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB), and class "H" coils (180°C), encapsulated in thermoplastic containing 40% glass fiber (type: ZH), are available.

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency of 50/60Hz (dualfrequency). The "Z" coils have Faston terminals for DIN 43650A connectors with protection to IP65

The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

ZB 12

YB 09

 Coil certification: 24V/50-60Hz, 115V/50-60Hz 220-230V/50-60Hz 12V DC, 24V DC 220-230V/50-60Hz

For the coils: 220-230V/50-60Hz, 240V/50-60Hz

220-230V/50-60Hz

• UL Recognized Comp. Mark for coils:

ZB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz **YB 09** 24V/60Hz, 110-120V/60Hz,

208-240V/60Hz

Coil

type

[]

Z - Y

Z - Y

Weight

[Kg]

0,330

0,330

Notes

[]

1

1

IALS	Valve body: Seals:	OT58 UNI 5705 brass stamping Viton	ICAL RES	Coil f	type]	Pow [V		Insulat. class
MATERI	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430 F stainless steel	ECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
ž	 Spring: 	AISI 302 stainless steel	H	ZB 09	ZB 12	9	12	F
	Shading ring:	Copper		YB 09 ZH 14	YB 12 ZH 16	<mark>9</mark> 14	12 16	F

Minimum

pressure

[bar]

0

0

Max differential pressure (M.O.P.D.)

in D.C.(=)

[bar]

22

12

in A.C.(~)

[bar]

22

12

SPECIFICATION

Fittings

ØĞ

["]

1/4

1/4

Note: 1) NP (nominal pressure): 64 bar.

Valve

type

[]

151 G

151 H

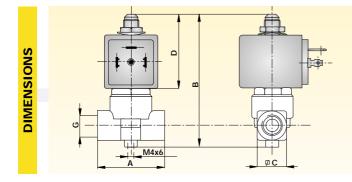
Nominal

orifice Ø

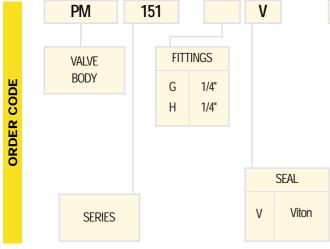
[mm]

1,5

2,0


Flow

coefficient Kv

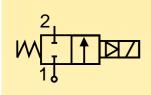

[m³/h]

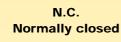
0,078

0,150

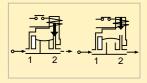
Fittings Ø G	А	В	С	D
["]	[mm]	[mm]	[mm]	[mm]
1/4	40,0	82,5	18	45,5

[V] [Hz] / d.c. 24 V 115V 220-230 V 240 V 12 V 24 V Coil 50/60 Hz 50/60 Hz d.c. type 50/60 Hz 50/60 Hz d.c. ZB 09 ZB 12 YB 09 YB 12 • • ZH 14 ZH 16 24 V / 60 Hz 110-120 V / 60 Hz 208-240 V / 60 Hz Coil type ZB 09 UL YB 09 UL


Note: Valve supplied with body (PM) and coil separate.


Connector to be ordered separately.

2/2 way - Normally Closed - Diaphragm pilot operated


Fittings: G = 3/8" - 1"

Series 168.1

Coil energised - open Coil de-energised - closed

General description:

PARKER series 168.1 solenoid valves are diaphragm pilot operated and therefore require a minimum differential pressure to operate.

They are used for air applications, even with high operating frequencies. The diaphragm is made of plastic with a fabric reinforcement.

Series 168.1 valves are normally closed. On request and for large orders, all the models can be supplied with manual control (MC).

Temperatures:

The working temperature for media	is:
maximum	+90°C
minimum	-10°C
The maximum ambient temperature	e is:
with class "F" coils	+50°C
•with class "H" coils	+80°C

Application:

Series 168.1 solenoid valves are ideal for air applications where high flow rates with high operating frequencies are required. Some typical application examples are: ·Air compressors;

- ·Dust removal systems;
- Systems of distribution by compressed air;
- •Pneumatic mail;
- ·Suction systems.

Coils:

For series 168.1 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB).

Class "H" coils (180°C) are also available encapsulated in thermoplastic containing 40% glass fiber (type: ZH).

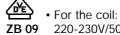
All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency of 50/60Hz (dualfrequency). The "Z" coils have Faston terminals for DIN 43650A connectors with protection to IP65.


The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Installation:

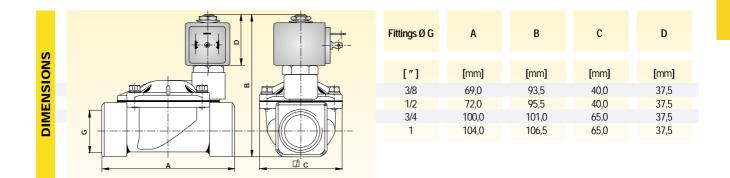
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

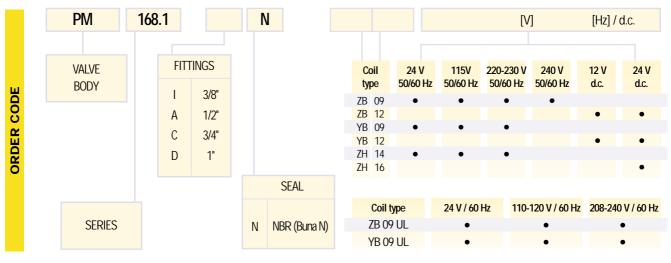
Approvals:

₩.	Coil certification:
ZB 09	24V/50-60Hz, 115V/50-60Hz
	220-230V/50-60Hz, 240V/50-60Hz
ZB 12	12V DC, 24V DC
YB 09	220-230V/50-60Hz

220-230V/50-60Hz, 240V/50-60Hz

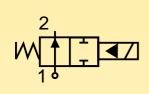
- 51
- UL Recognized Comp. Mark for the coil: ZB 09 24V/60Hz, 110-120V/60Hz, 208-
- 240V/60Hz YB 09 24V/60Hz, 110-120V/60Hz, 208-
- 240V/60Hz

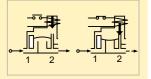



for: air

ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping NBR (Buna N)	RICAL JRES	Coil t [type]	Pov [V		Insulat. class
ATERIA	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430 F stainless steel	LECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Spring:	AISI 302 stainless steel		ZB 09	ZB 12	9	12	F
	Shading ring:	Copper		YB 09 ZH 14	YB 12 ZH 16	9 14	12 16	F

z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max differential pressure (M.O.P.D.)		Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
U	3/8	168.1 I	13	2,0	0,5	16	16	Z - Y	0,550	1
E.	1/2	168.1 A	13	2,5	0,5	16	16	Z - Y	0,580	1
U	3/4	168.1 C	20	7,0	0,5	16	16	Z - Y	1,020	1
SPE	1	168.1 D	25	8,0	0,5	16	16	Z - Y	1,080	1


Note: 1) NP (nominal pressure): 25 bar.



2/2 way - Normally open - Diaphragm pilot operated

Series 169.1

N.O. Normally open Coil energised - closed Coil de-energised - open

General description:

PARKER series **169.1** solenoid valves are diaphragm pilot operated and therefore require a minimum differential pressure to operate.

They are used for **air** applications, including high operating frequencies. The diaphragm is made of plastic with a fabric reinforcement.

The valves of the series **169.1** are **normally open**.

Temperatures:

The working temperature for media is:							
maximum	+90°C						
minimum	-10°C						
The maximum ambient temperatur	e is:						
with class "F" coils	+50°C						
with class "H" coils	+80°C						

Applications:

Series **169.1** solenoid valves are ideal for air applications where high flow rates with high operating frequencies are required. Some typical application examples are:

- Air compressors;
- Dust removal systems;
- Compressed air distribution systems;
- Pneumatic mail;
- Suction systems.

Fittings: G = 3/8" - 1"

Coils:

For series **169.1** valves class **"F"** coils **(155°C)** are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB).

Class **"H**" coils **(180°C)** are also available encapsulated in thermoplastic containing 40% glass fiber (type: ZH).

All the coils are for continuous service, 100% E.D.

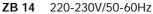
The rated voltage tolerance is:

±10% for AC. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with frequency of 50/60Hz (dualfrequency). The "Z" coils have Faston terminals for **DIN 43650A** connectors with protection to **IP65**.

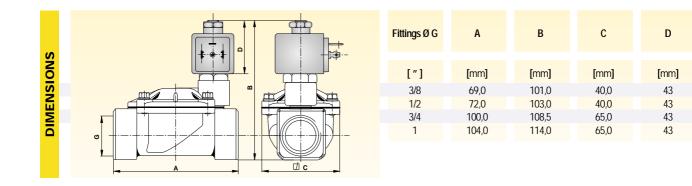
The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

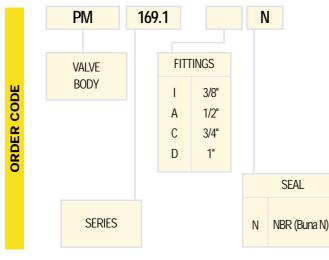

Installation:

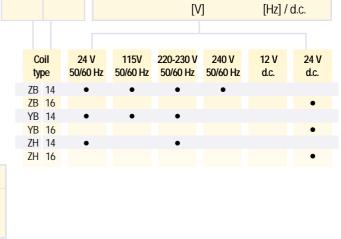
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

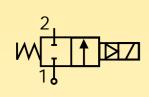
- Coil certification:
- **ZB 14** 24V/50-60Hz, 115V/50-60Hz 220-230V/50-60Hz
- **ZB 16** 24V DC
- **YB 14** only for 220V/50-60Hz **YB 16** 24V DC
- YB 16
 - For the coil:

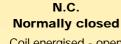


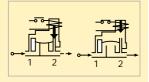

for: air


	• Valve body: • Seals:	OT58 UNI 5705 brass stamping NBR (Buna N)	rical RES	Coil t [ype]	Pov [V		Insulat. class
TFPI	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430 F stainless steel	LECTRIC	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Spring:	AISI 302 stainless steel		ZB 14	ZB 16	14	16	F
	Shading ring:	Copper		YB 14	YB 16	14	16	F
	0 0			ZH 14	ZH 16	14	16	Н

z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max differential pressure (M.O.P.D.)		Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
U	3/8	169.1 I	13	2,0	0,5	16	16	Z - Y	0,560	1
Ē	1/2	169.1 A	13	2,5	0,5	16	16	Z - Y	0,590	1
U	3/4	169.1 C	20	7,0	0,5	16	16	Z - Y	1,250	1
SPE	1	169.1 D	25	8,0	0,5	16	16	Z - Y	1,110	1






2/2 way - Normally Closed - Diaphragm pilot operated

Series 173

Coil energised - open Coil de-energised - closed

General description:

PARKER series 173 solenoid valves are diaphragm pilot operated and therefore require a minimum differential pressure to operate.

They are used for general applications with media such as water, air, light oils (2°E) and inert gases, provided they are compatible with the construction materials used.

Series 173 valves are normally closed. They are compact, with high flow rates and low power consumption.

Temperatures:

The working temperature for media is: maximum +90°C -10°C minimum The maximum ambient temperature is: +50°C

Application:

Series 173 solenoid valves are ideal for the automatic control of media in a wide range of applications such as:

- Computerised controls;
- · Cooling systems for machine tools;
- Dry-cleaning machines;
- · Autoclaves;
- · Compressed air systems;
- Car wash systems;
- Hygiene-health systems;
- Tanning industry.

Fittings: G = 3/8" - 1/2"

Coils:

Series 173 valves are available with class "F" coils (155°C) with thermoplastic insulation, reinforced with 30% glassofibre. All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "W" coil can be used on a.c. with frequency of 50/60Hz (dualfrequency) and has Faston terminals for DIN 43650B connectors with protection to IP65.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

- Coil certification:
- WB 4,5 115V/50-60Hz, 220-230V/50-60Hz
 - For the coil:

WB 4,5 115V/50-60Hz, 220-230V/50-60Hz

- UL Recognized Comp. Mark for the coil:
- WB 4,5 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

Coil

type

[]

W

W

Weight

[Kg]

0,435

0,410

Notes

[]

1

1

210	ALS	• Valve body: • Seals:				type]	Pov [V		Insulat. class
TEDI		 Enclosing tube: Plunger: 	OT58 UNI 5705 brass stamping AISI 430 F stainless steel	ECTRICA	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
		Spring:	AISI 302 stainless steel		WB 4,5	WB 5,0	4,5	5,0	F
		Shading ring:	Copper						

Minimum

pressure

[bar]

0,35

0,35

Max differential pressure (M.O.P.D.)

in D.C.(=)

[bar]

15

15

in A.C.(~)

[bar]

15

15

SPECIFICATION

Fittings Ø G

["]

3/8

1/2

Note:	1)	NP	(nominal	pressure):	25	bar.
14010.	• /		(1101111111	p1000010).		Sur.

Valve

type

[]

173 I

173 A

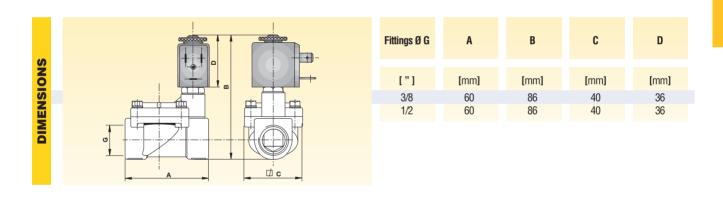
Nominal

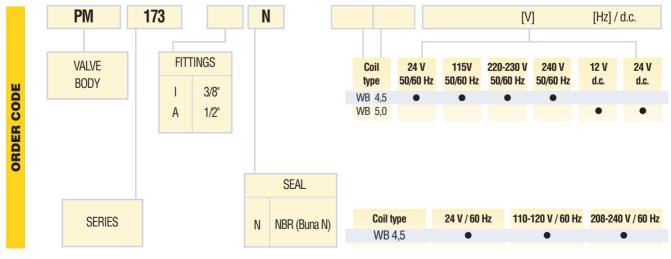
orifice Ø

[mm]

13

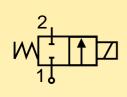
13

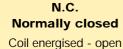

Flow

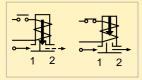

coefficient Kv

[m³/h]

3,00


3,50




2/2 way - Normally Closed - Direct operated

Series 174

Coil de-energised - closed

General description:

PARKER series 174 solenoid valves have direct action and therefore do not require a minimum differential pressure to operate. They are used for general applications, when small overall dimensions and low consumption are required, with media such as water, air, light oils (2°E) and inert gases, provided they are compatible with the construction materials used. Series 174 valves are normally closed. For large orders, valves are available on request with manual operator.

Temperatures:

The working temperature for media is: maximum +140°C minimum -10°C The maximum ambient temperature is: +50°C

Application:

Series 174 solenoid valves are ideal for the automatic control of media with low flow rates

Some typical application examples: Espresso coffee machines;

- •Sterilisers;
- ·Compressed air systems;
- •Welding machines;
- •Wood-working machines;
- •Electrical medical equipment;
- Shoe-manufacturing machines.

Fittings: G = 1/8" - 1/4"

Coils:

For series 174 valves the WB class "F" coil (155°C), encapsulated in thermoplastic containing 30% glass fiber, is used. The coil is for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "W" coil can be used on a.c. with frequency of 50/60Hz (dualfrequency) and has Faston terminals for DIN 43650B connectors with protection to IP65.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body. The series 174 valves with the code .4 are fitted with M4 x 7 mounting holes on the valve body with centre distance 18 x 18 mm.

Approvals:

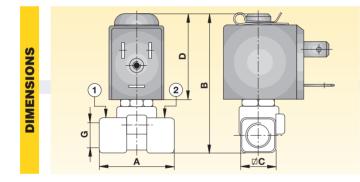
WB 4,5 115V/50-60Hz, 220-230V/50-60Hz

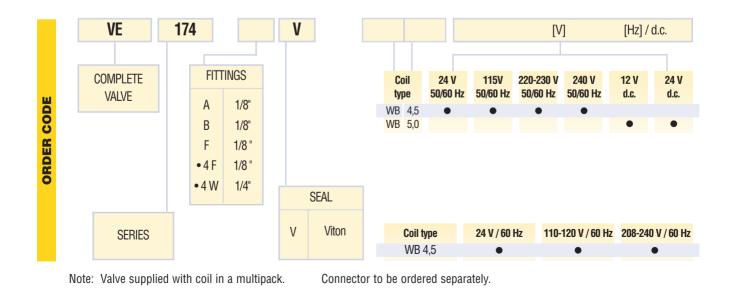
• For the coil: WB 4.5 115V/50-60Hz, 220-230V/50-60Hz

• UL Recognized Comp. Mark for the coil: WB 4,5 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

Special versions:

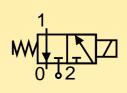
On request and for large orders, the series 174 can be fitted with quick action coupling fittings such as **Prestolock** cartridge.




ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping Viton	ICAL RES	Coil t [type]	Pow [W		Insulat. class
MATERIAL	Enclosing tube: Plunger:	OT58 UNI 5705 brass stamping AISI 430 F stainless steel	ECTRIC	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
M	 Spring: 	AISI 302 stainless steel		WB 4,5	WB 5,0	4,5	5,0	F
	Shading ring:	Copper						

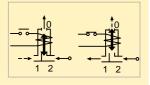
z	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max differential pressure (M.O.P.D.)		Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
Ö	1/8	174 A	1,5	0,06	0	20	15	W	0,14	1
E.	1/8	174 B	2	0,11	0	15	10	W	0,14	1
Ū	1/8	174 F	2,5	0,14	0	10	6	W	0,14	1
E E	1/8	174.4 F	2,5	0,14	0	10	6	W	0,15	1
S	1/4	174.4 W	2,5	0,14	0	10	6	W	0,15	1

Fittings Ø G	A	В	C	D
["]	[mm]	[mm]	[mm]	[mm]
1/8	30	56	14	36
1/4	30	58,5	18	36


67

Dar Ker Climate & Industrial Controls

Parker Hannifin S.p.A. via E. Fermi, 5 20060 Gessate (Milano) - Italy


3/2 way - Normally Closed - Direct operated

Series 179

N.C. Normally closed

Coil energised - open Coil de-energised - closed

General description:

PARKER series 179 solenoid valves have direct action and are used in systems for pressurisation and automatic discharge of media when small overall dimensions and low power consumption are required. They are suitable for general applications with media such as water, air, light oils (2°E) and inert gases, provided they are compatible with the construction materials used. Series 179 valves are normally closed. For large orders, valves are available on request with manual operator.

Temperatures:

The working temperature for media is: maximum +140°C minimum -10°C The maximum ambient temperature is: +50°C

Application:

Series 179 solenoid valves are ideal for automatic control of media where low flow rates are required.

Some typical application examples:

- · Exhaust gas analysers;
- Sterilisers;
- · Scientific equipment;
- · Electrical medical equipment;
- · Automatic dispensers;
- · Pilot valves.

Fittings: G = 1/8"

For series 179 valves the WB class "F" coil (155°C), encapsulated in thermoplastic containing 30% glass fiber, is used.

The coil is for continuous service, 100% E.D.

The rated voltage tolerance is: ±10% for A.C. power supply and

+10% -5% for D.C.

The "W" coil can be used on a.c. with frequency of 50/60Hz (dualfrequency) and has Faston terminals for DIN 43650B connector with protection to IP65.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

Coil certification:

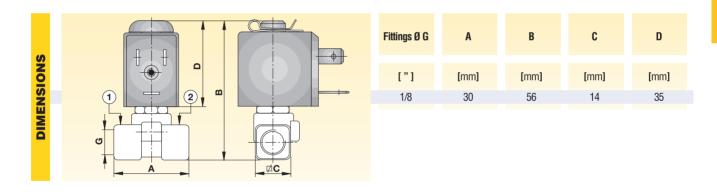
WB 4,5 115V/50-60Hz, 220-230V/50-60Hz

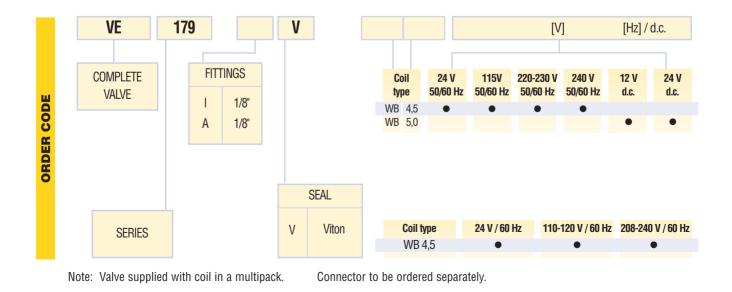
• For the coil: WB 4,5 115V/50-60Hz, 220-230V/50-60Hz

• UL Recognized Comp. Mark per la bobina:

WB 4.5 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

Special versions


On request and for large orders, the series 179 valves can be fitted with quick action coupling fittings such as Prestolock cartridge.



ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping Viton	CAL	Coil t [ype]	Pow [W		Insulat. class
TERIAI	Enclosing tube: Plunger:	OT58 UNI 5705 brass stamping AISI 430 F stainless steel	ECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Spring:	AISI 302 stainless steel	38	WB 4,5	WB 5,0	4,5	5,0	F
	Shading ring:	Copper						

N	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dif pressure (N	ferential /I.O.P.D.)	Coil type	Weight	Notes
SPECIFICATION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
2	1/8	179	1,2 (1,6)*	0,04	0	10	10	W	0,14	1
4	1/8	179 A	1,5 (1,6)*	0,05	0	7	7	W	0,14	1
SPEC	Note: 1) NP (nominal pressure): 25 bar. (2) * Discharge diameter.									

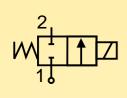
69

Parker Hannifin S.p.A. via E. Fermi, 5 20060 Gessate (Milano) - Italy

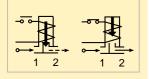
Solenoid Valves for Steam and High Temperatures

Contents

			pages
Series	126	NC	74-75
Series	128	NC	76-77
Series	133Н	NC	78-79
Series	135	NC	80-81
Series	140.2	NC	82-83
Series	156.2	NC	84-85
Series	158	NC	86-87
Series	161.4	NC	88-89


NC = normally closed

FITTINGS	G = 1/8"	1/8"	" 5	G = 1/4"	;)=9	G=3/8″	G=1/2″	12"	G=3/4″	1,4 "	G=1 ″	1 "	G=1 1/4"	1/4"	G=1 1/2"	112"	G=2″	2"
	a.c. [bar]	d.c. [bar]	a.c. [bar]	d.c. [bar]	a.c. d.c. a.c. d.c. [bar] [bar]	d.c. [bar]	a.c. [bar]	d.c. [bar]										
			10	6÷10														
	series '	128: 32	mm flar	nge: a.c.	series 128: 32 mm flange: a.c. 10 bar - d.c 10 bar	d.c 10	oar											
Series 133H					20	20	20	20	20	20	20	20	10	10	10	10	10	10
					10	10	10	10	10	10	10	10						
	20÷30																	
					16		16		14		14							
			10	4÷10														
	10	10	10	10														


The numbers in [bar] in the table indicate the M.O.P.D. values (maximum operating differential pressure). The columns refer to the type of fittings and the type of power supply, the rows refer to the valve series.

2/2 way - Normally Closed - Direct Operated

Series 126

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series 126 solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used with steam and superheated water.

Series 126 valves are normally closed.

Temperatures:

The working temperature for media is: +140°C for models with an ethylene propylene seal (EPDM) and +180°C for the version with a Teflon seal (PTFE).

The minimum temperature of media is 10°C

	-10 C
The maximum ambient temperatur	e is:
with class "F" coils	+50°C
with class "H" coils	+80°C

Application:

Series 126 solenoid valves are ideal for automatic control of steam and superheated water in applications such as: Steam generators;

- Sterilisers;
- · Autoclaves;
- Espresso coffee machines;
- Drink dispensers;
- Furnaces:
- Ironing boards and presses.

Fittings: G = 1/4''

Coils:

For series 126 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types ZB, YB) and class "H" coils (180°C) are available encapsulated in thermoplastic containing 40% of glass fiber (type ZH). All the coils are for continuous service,

100% E.D. The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency).

The "Z" coils have Faston terminals for **DIN** 43650A connectors with protection to IP65.

The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body. The valve body has a M4 x 8 mounting hole.

Approvals:

• Coil certification: **ZB 09** 24V/50-60Hz, 115V/50-60Hz, 220-230V/50-60Hz, 240V/50-60Hz **ZB 12** 12V DC, 24V DC

YB 09 220-230V/50-60Hz

• For the coils: **ZB 09** 220-230V/50-60Hz, 240V/50-60Hz

YB 09 220-230V/50-60Hz

- UL Recognized Comp. Mark for the coils:
- ZB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz
- YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

Coil

type

[]

YB - ZB

ΖH

Weight

[Kg]

0,33

0,33

Notes

[]

1 - 2

2

ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping EPDM - PTFE (Teflon)	RICAL URES	Coil t [type]	Pow [V		Insulat. class
TERIA	Enclosing tube: Plunger: Spring:	AISI 304 stainless steel AISI 430F stainless steel AISI 302 stainless steel	ECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Shading ring:	Copper		ZB 09 YB 09	ZB 12 YB 12	9	12 12	F
				ZH 14	ZH 16	14	12	H

Minimum

pressure

[bar]

0

0

Max differential pressure (M.O.P.D.)

in D.C.(=)

[bar]

6

10

in A.C.(~)

[bar]

10

10

Ζ	2	I	
7			
2	-		
Ē			
2	1	i.	
2	1	1	
Ç	2		
F.			
H		1	
ī	1	1	
ñ	1	ì	
	÷		
0	ļ	i.	
U	n	ľ	

Fittings

ØĞ

["]

1/4

1/4

Valve

type

[]

126 YH

126 YT

Nominal

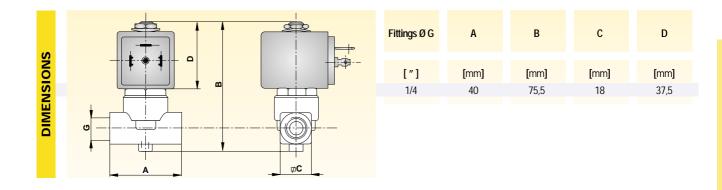
orifice Ø

[mm]

3,0

3,0

Note: 1) Maximum pressure for steam 4 bar (140°C). 2) NP (nominal pressure): 25 bar.

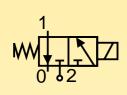

Flow

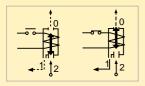
coefficient Kv

[m³/h]

0,25

0,25




Note: Valve supplied with body (PM) and coil separate. Connectors to be ordered separately.

3/2 way - Normally Closed - Direct Operated

Series 128

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series 128 solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for **superheated water**. Series 128 valves are normally closed. The inlet and outlet fittings are situated on the mounting flange and enclosing tube.

Temperatures:

The working temperature for media is: +140°C maximum minimum -30°C The maximum ambient temperature is:

• with class "F" coils +50°C

• with class "H" coils +80°C

Application:

Series 128 solenoid valves are ideal for automatic control of superheated water for dispensing espresso coffee.

Models are available with various seals and fitting configurations for maximum flexibility of application and installation. Some typical application examples:

- Espresso coffee machines, for bars;
- · Espresso coffee machines, for the home;
- Automatic dispensers.

Flange fittings

Coils:

For series 128 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber, (ZB, YB types). Class "H" coils (180°C) are available encapsulated in thermoplastic containing 40% of glass fiber (ZH type).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency).

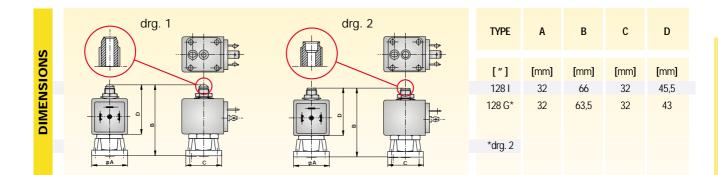
The "Z" coils have Faston terminals for **DIN** 43650A connectors with protection to IP65. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

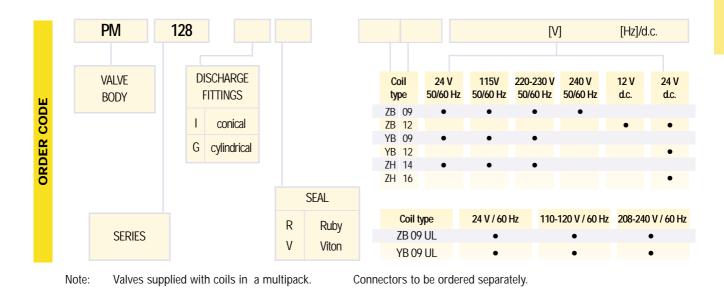
Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

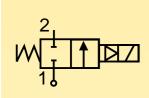
- (H)Coil certification:
- ZB 09
 - 24V/50-60Hz,115V/50-60Hz, 220-230V/50-60Hz, 240V/50-60Hz
- **ZB 12** 12VDC, 24VDC YB 09 220-230V/50-60Hz
- 必 • For the coils:
- **ZB 09** 220-230V/50-60Hz.240V/50-60Hz
- YB 09 220-230V/50-60Hz
- UL Recognized Comp. Mark For the coils:
- 24V/60Hz, 110-120V/60Hz, ZB 09 208-240V/60Hz
- YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

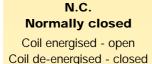

for: superheated water

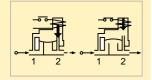

ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping Ruby - Viton	RICAL RES	Coil [type]	Pow [W		Insulat. class
TERIA	Enclosing tube: Plunger: Spring:	AISI 304 stainless steel AISI 430F stainless steel AISI 302 stainless steel	ECTRIC	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Shading ring:	Copper	3 8	ZB 09 YB 09 ZH 14	ZB 12 YB 12 ZH 16	9 9 14	12 12 16	F F H

7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dif pressure (N	ferential 1.O.P.D.)	Coil type	Weight	Notes
ATION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
FIC	-	128 I 128 G	1,3 - (2,5)* 1,3 - (2,5)*	0,070 0,070	0	10 10	10 10	Z - Y Z - Y	0,310 0,310	1 - 2 1 - 2
U	-	128 I-UL	1,3 - (2,5)*	0,070	0	10	10	Z - UL	0,310	1 - 2
SPE	-	128 G-UL	1,3 - (2,5)*	0,070	0	10	10	Z - UL	0,310	1-2

Note: 1) NP (nominal pressure): 25 bar.


2) Maximum static pressure 14.5 bar (for Viton sealing, maximum static pressure: 12 bar). (*) Diameter of the discharge.





2/2 way - Normally Closed - Diaphragm pilot operated

Series 133 ... H

General description:

PARKER series 133H solenoid valves are diaphragm pilot operated and require a minimum differential pressure to operate. They are used for steam and superheated water where high flow rates are required. Series 133H valves are normally closed.

Temperatures:

The working temperature for	media is:
maximum	+140°C
minimum	-10°C
The maximum ambient temp	erature is:

• with coils in class "F" +50°C • with coils in class "H" +80°C

Application:

Series 133 H solenoid valves are ideal for the automatic control of high temperature water and steam.

Some typical application examples:

- · Steam generators;
- Sterilisation systems;
- Industrial washing machines;
- Washing systems;
- Furnaces;
- · Boiling systems;
- · Autoclaves.

Fittings: G = 3/8" - 2"

Coils:

For series 133H valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types ZB, YB) and class "H" coils (180°C) are available encapsulated in thermoplastic containing 40% of glass fiber (ZH type). All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

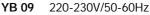
The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency).

The "Z" coils have Faston terminals for DIN 43650A connectors with protection to IP65. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:



Coil certification: 24V/50-60Hz, 115V/50-60Hz, 220-230V/50-60Hz, 240V/50-60Hz ZB 12 12V DC, 24V DC

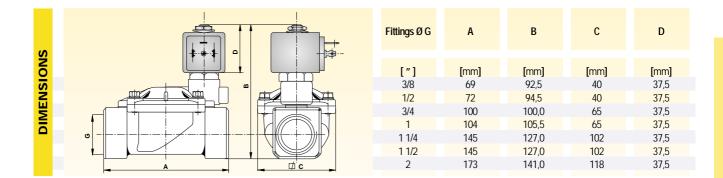
220-230V/50-60Hz YB 09

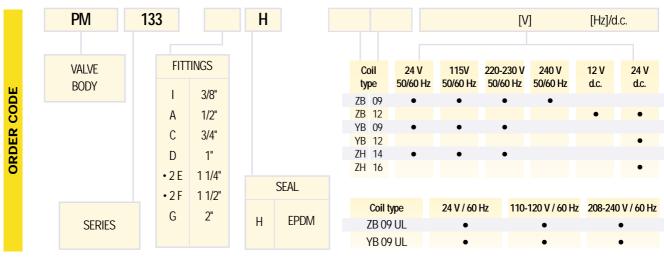
220-230V/50-60Hz, 240V/50-60Hz

• UL Recognized Comp. Mark for the coils:

24V/60Hz, 110-120V/60Hz, 208-240V/60Hz ZB 09

YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

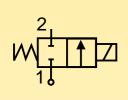

ALS	 Valve body: Seals: 	OT58 UNI 5705 brass stamping EPDM	ICAL RES	Coil t [ype]	Pow [V		Insulat. class
NTERI	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430F stainless steel	ATU	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Spring:	AISI 302 stainless steel		ZB 09	ZB 12	9	12	F
	 Shading ring: 	Copper		YB 09	YB 12	9	12	F
	0 0			ZH 14	ZH 16	14	16	Н

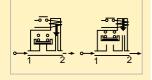

7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dit pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ATION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
U U	3/8	133 I	13	3,00	0,1	20	20	Z - Y	0,550	1 - 2
Ē	1/2	133 A	13	3,00	0,1	20	20	Z - Y	0,580	1 - 2
Ū	3/4	133 C	20	8,40	0,1	20	20	Z - Y	1,020	1 - 2
ш	1	133 D	25	9,60	0,1	20	20	Z - Y	1,080	1 - 2
SP	1 1/4	133.2 E	35	25,20	0,1	10	10	Z - Y	3,150	1 - 2
	1 1/2	133.2 F	40	30,00	0,1	10	10	Z - Y	2,900	1 - 2
	2	133 G	50	37,20	0,1	10	10	Z - Y	4,300	1 - 2

Note:

1) NP (nominal pressure): 25 bar.

2) Maximum pressure for steam: 4 bar (140°C).




Note: Valve supplied with body (PM) and coil separate. Connectors to be ordered separately.

2/2 way - Normally Closed - Diaphragm pilot operated

Series 135

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series **135** solenoid valves are diaphragm pilot operated and therefore require a minimum differential pressure to operate.

They are used for steam and superheated water.

Electrical components are insulated from the moving parts in contact with the media and therefore series **135** valves are particularly suitable for demanding applications. Series **135** valves are **normally closed**.

Temperatures:

The working temperature for media is: maximum +180°C minimum -30°C The maximum ambient temperature is: +80°C

Fittings: G = 3/8" - 1"

Coils:

For series **135** valves class **"F"** coils **(155°C)** are available encapsulated in thermoplastic containing 40% of glass fiber (types ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5%. for D.C.

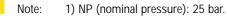
The "Z" coil can be used on a.c. with a frequency of 50/60 Hz (dual frequency) and has Faston terminals for **DIN 43650A** connectors with protection to **IP65**.

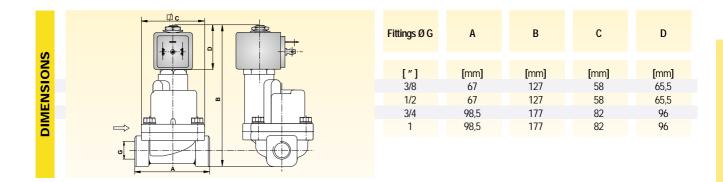
Application:

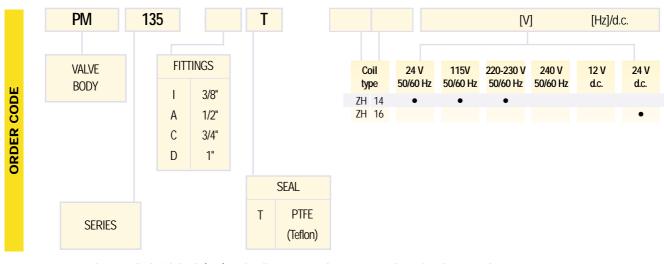
Series **135** solenoid valves are ideal for automatic control of steam and superheated water in a wide range of applications such as those listed below.

- Dry-cleaning systems;
- Steam generators;
- Laundry systems;
- Sterilisers;
- Autoclaves;
- · Plant food industry;
- Steam presses;
- Drying systems;
- Catering systems.

Installation:

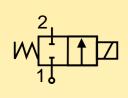

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

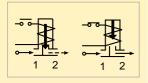




IALS	 Valve body: Seals: Enclosing tube: 	OT58 UNI 5705 brass stamping PTFE (Teflon) AISI 304 stainless steel	RICAL JRES	Coil t [type]	Pov [V		Insulat. class
ER	Plunger:	AISI 430F stainless steel		A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
AT	Spring:	AISI 302 stainless steel	ECT					
Σ	Shading ring:	Copper	급표	ZH 14	ZH 16	14	16	Н
	•							

-	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dit pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
VTION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
CA	3/8	135 I	16	4,7	0,5	10	10	Z	1,150	1
Ē	1/2	135 A	16	4,7	0,5	10	10	Z	1,000	1
U	3/4	135 C	27	11,6	0,5	10	10	Z	3,500	1
SPE	1	135 D	27	11,6	0,5	10	10	Z	3,200	1




Note: Valve supplied with body(PM) and coil separate. Connectors to be ordered separately.

2/2 way - Normally Closed - Direct Operated

Series 140.2

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series 140.2 solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for general applications with media such as steam and superheated

water.

Series 140.2 valves are normally closed.

Temperatures:

The working temperature for media is:							
maximum	+140°C						
minimum	-30°C						
The maximum ambient temperatu	re is:						
with class "F" coils	+50°C						
with class "H" coils	+80°C						

Application:

Series 140.2 solenoid valves are particularly suitable for small flow rates of steam or superheated water. Some typical application examples:

· Espresso coffee machines;

- Automatic dispensers;
- Sterilisers;
- Autoclaves.

Fittings: G = 1/8"

Coils:

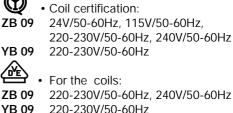
For series 140.2 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB) and class "H" coils (180°C) series are available encapsulated in thermoplastic material containing 40% of glass fiber (type ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

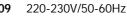
±10% for A.C. power supply and

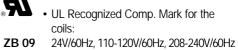
+10% -5%. for D.C.


The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency).

The "Z" coils have Faston terminals for **DIN** 43650A connectors with protection to IP65. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

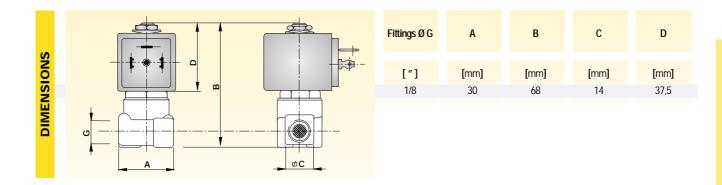
Installation:

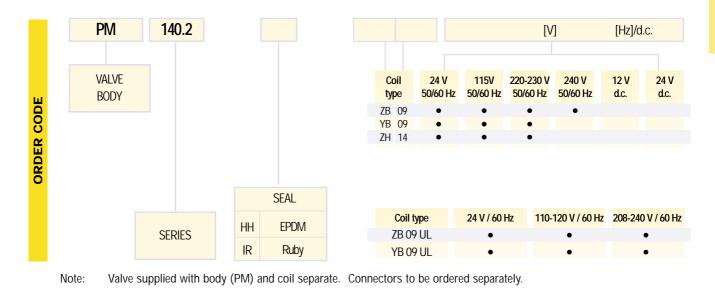

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.


Approvals:

For the coils:

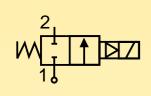
YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

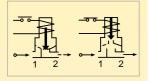



ALS	Valve body: Seals: Factorize tube:	OT58 UNI 5705 brass stamping Ruby - EPDM	RICAL JRES	Coil type []		Power [W]		Insulat. class
TERIA	 Enclosing tube: Plunger: Spring: 	AISI 304 stainless steel AISI 430F stainless steel AISI 302 stainless steel	ECTRI EATUR	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Shading ring:	Copper		ZB 09 YB 09	-	9 9	-	F
				ZH 14	-	14	-	Н

7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max di pressure (1	fferential M.O.P.D.)	Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
<u>U</u>	1/8	140.2 HH	2,5	0,19	0	20	-	Z - Y	0,320	1
CIFI	1/8	140.2 IR	2,5	0,19	0	10	-	Z - Y	0,320	1

SPE(


Note: 1) NP (nominal pressure): 64 bar.



2/2 way - Normally Closed - Diaphragm pilot operated

Series 156.2

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series 156.2 solenoid valves are diaphragm pilot operated and require a minimum differential pressure to operate. They are used for general applications with media such as steam and superheated water.

Series 156.2 valves are normally closed .

Temperatures:

The working temperature for media is:								
maximum	+160°C							
minimum	-30°C							
The maximum ambient tempe	erature is:							
with class coils "F"	+50°C							
with class coils "H"	+80°C							

Application:

Series 156.2 solenoid valves are ideal for automatic control of steam and superheated water in a wide range of applications such as: · Sterilisers;

- Ironing machines;
- Hospital equipment;
- Tanning plants;
- · Tobacco plants.

Fittings: G = 3/8" - 1"

Coils:

For series 156.2 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB) and class "H" coils (180°C) are available encapsulated in thermoplastic containing 40% glass fiber (type ZH).

All the coils are for continuous service, 100% E.D.

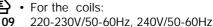
The rated voltage tolerance is:

±10% for A.C. power supply

The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency).

The "Z" coils have Faston terminals for DIN 43650A connectors with protection to IP65. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

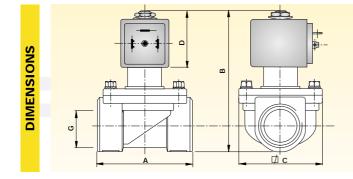
Installation:


The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

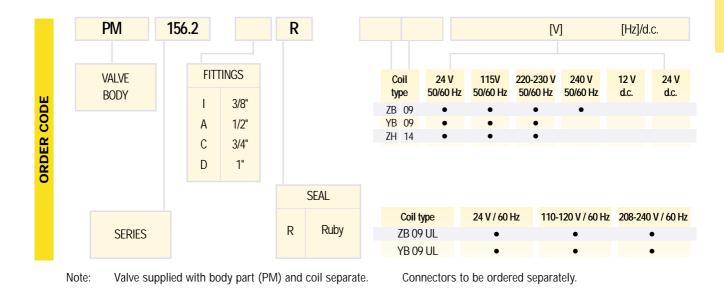
Approvals:

· Coil certification: 24V/50-60Hz, 115V/50-60Hz, 220-230V/50-60Hz, 240V/50-60Hz YB 09 220-230V/50-60Hz

- ZB 09 YB 09
 - 220-230V/50-60Hz
- **.** • UL Recognized Comp. Mark for the coils: ZB 09
- 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz
- YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

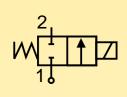

ALS	 Valve body: Seals: 	OT58 UNI 5705 brass stamping Pilot of Ruby - diagram of PTFE (Teflon)	RICAL URES	Coil t [type]	Pow [W		Insulat. class
ERI	Enclosing tube: Plunger:	AISI 304 stainless steel AISI 430F stainless steel	ATI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Spring:	AISI 302 stainless steel		ZB 09	-	9	-	F
	Shading ring:	Copper		YB 09	-	9	-	F
	5 5 5			ZH 14	-	14	-	Н

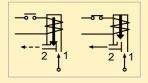
7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dit pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ATION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
C	3/8	156.2 I	10	1,32	0,5	16	-	Z - Y	0,580	1 - 2
Ē	1/2	156.2 A	10	1,44	0,5	16	-	Z - Y	0,580	1 - 2
U	3/4	156.2 C	18	2,22	0,5	14	-	Z - Y	1,080	1 - 2
PEC	1	156.2 D	18	2,52	0,5	14	-	Z - Y	1,080	1 - 2
SP										


Note:

1) NP (nominal pressure): 25 bar.

2) Maximum pressure for steam: 6.5 bar (160 °C).


Fittings Ø G	А	В	С	D
["]	[mm]	[mm]	[mm]	[mm]
3/8	48	85,0	40	37,5
1/2	48	85,0	40	37,5
3/4	48	85,0	40	37,5
1	60	93,5	51	37,5



2/2 way - Normally Closed - Direct Operated

Series 158

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series 158 solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for steam and superheated

water where the flow rate has to be altered by means of a manual regulator.

Series 158 valves are normally closed.

Temperatures:

The working temperature for media is: +140°C for the version with a seal of ethylene propylene (EPDM) and +180°C for the version with a seal of Teflon (PTFE). The minimum temperature for media is -

10°C for the two versions. The m

naximum ampient temperature	IS:
with class "F" coils	+50°C
with class "H" coils	+80°C

Application:

Series 158 solenoid valves are ideal for the control and regulation of steam in equipment such as:

- Ironing machines;
- Steam-cleaning machines;
- · Steam sprayers.

Fittings: G = 1/4"

Coils:

For series 158 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB) and class "H" coils (180°C) are available encapsulated in thermoplastic containing 40% glass fiber (type ZH). All the coils are for continuous service,

100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% for D.C.

The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency)

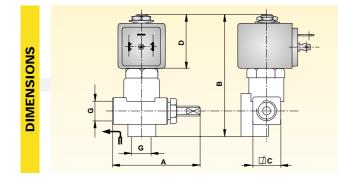
The "Z" coils have Faston terminals for DIN 43650A connector with protection to IP65. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to IP67.

Installation:

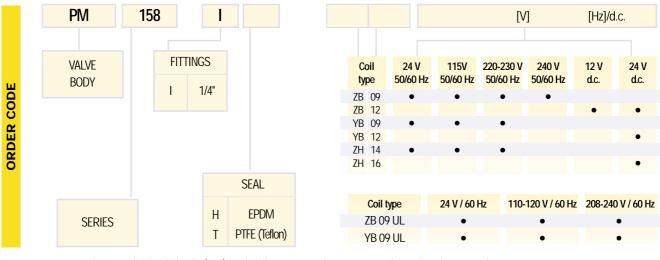
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

- (1)
- Coil certification: **ZB 09** 24V/50-60Hz, 115V/50-60Hz,
- 220-230V/50-60Hz, 240V/50-60Hz **ZB 12** 12V DC, 24V DC
- YB 09 220-230V/50-60Hz
- æ • For the coils:
- **ZB 09** 220-230V/50-60Hz, 240V/50-60Hz
- YB 09 220-230V/50-60Hz
- **R1**. UL Recognized Comp. Mark for the coils:
- ZB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz
- YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz


ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping EPDM - PTFE (Teflon)	RICAL URES	Coil [51	Pow [W		Insulat. class
	Enclosing tube: Plunger: Spring:	AISI 304 stainless steel AISI 430F stainless steel AISI 302 stainless steel	ELECTRIC, FEATURE	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Shading ring:	Copper		ZB 09 YB 09	ZB 12 YB 12	9	12 12	F
				ZH 14	ZH 16	14	12	H

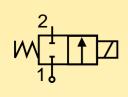
7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max differential pressure (M.O.P.D.)		Coil type	Weight	Notes
	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
<u>U</u>	1/4	158 IH	3,0	0,2	0	10	4	ZB - YB	0,320	1 - 2
Ē	1/4	158 IT	3,0	0,2	0	10	10	ZH	0,400	1
SPEC										


Note:

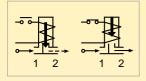
1) NP (nominal pressure): 25 bar.

2) Maximum pressure for steam: 4 bar (140 °C).

Fittings Ø G	A	В	C	D
["]	[mm]	[mm]	[mm]	[mm]
1/4	57	82	18	37,5



Note: Valve supplied with body (PM) and coil separate. Connectors to be ordered separately.


87

2/2 way - Normally Closed - Direct Operated

Series 161.4

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series 161.4 solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for general applications with media such as steam and superheated water.

Series 161.4 valves are normally closed.

Temperatures:

The working temperature for media is: +140°C maximum minimum -10°C The maximum ambient temperature is: +80°C

Application

Series 161.4 solenoid valves are ideal for automatic control of steam and superheated water with low flow rates.

Some examples of typical applications: • Espresso coffee machines;

- Sterilisers;
- Electrical medical equipment;
- Humidifiers.

Fittings: Rp = 1/8" - 1/4"

Coils:

For series 161.4 valves class "F" coils (155°C) are available encapsulated in thermoplastic containing 30% heat-stabilised glass fiber (type KT).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and


+10% -5% in D.C.

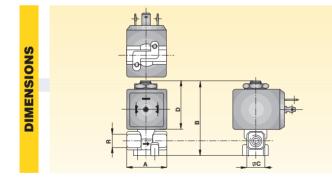
The "K" coil can be used on a.c. with a frequency of 50 Hz (single frequency) and has Faston terminals for DIN 43650A connectors with protection to IP65.

Installation:

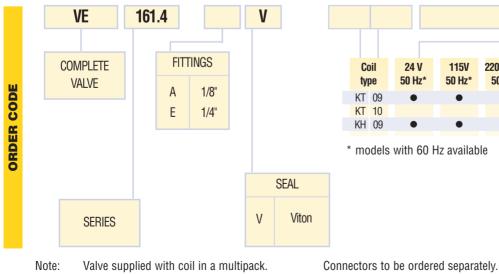
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

- 24V/50Hz KH 09
 - 115V/50Hz
 - 230V/50Hz.
- KT 09 115V/50Hz 220-230V/50Hz.



IALS	 Valve body: Seals: 	OT58 UNI 5705 brass stamping Viton	RES	Coil 1 [type]	Pow [V		Insulat. class
ER	Enclosing tube: Plunger:	OT58 UNI 5705 pressed brass AISI 430 F stainless steel	ECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Spring:	AISI 302 stainless steel		KH 09	-	9	-	Н
	Shading ring:	Copper		KT 09	KT 10	9	10	F


7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dit pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ICATION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
S	1/8	161.4 A	2,2	0,120	0	10	10	K	0,20	1 - 2
CIF	1/4	161.4 E	2,2	0,120	0	10	10	К	0,22	1 - 2
SPECIF										

- Note:
- 1) NP (nominal pressure): 25 bar.

2) Maximum pressure for steam: 4 bar (140°C).

Fittings Ø Rp	A	В	C	D
["]	[mm]	[mm]	[mm]	[mm]
1/8	32	56	14	37,5
1/4	38	60	16	37,5

Solenoid Valves for Heating

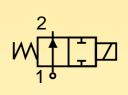
Solenoid valves for heating

Contents

eries	120.4	NO	
ieries	131	NC	
Series	131.4	NC	
Series	140	NC	
Series	153	NC	

NO = normally open

NC = normally closed


12"	d.c. [bar]					0,5÷3,5
G=1/2″	a.c. [bar]					2÷5
G=3/8″	d.c. [bar]					0,5÷3,5
9	a.c. [bar]					2÷5
G = 1/4"	d.c. [bar]			-	12÷17	
" 9	a.c. [bar]	30		2	30	
G = 1/8"	d.c. [bar]		13÷22	1	17	
ш Э	a.c. [bar]	30	15÷25	2	30	
FITTINGS	TYPE	Series 120.4	Series 131	Series 131.4	Series 140	Series 153

The numbers in [bar] in the table indicate the M.O.P.D. values (maximum operating differential pressure). The columns refer to the type of fittings and the type of power supply, the rows refer to the valve series.

Solenoid valves for heating

2/2 way - Normally Open - Direct Operated

Series 120.4

N.O. Normally open Coil energised - closed Coil de-energised - open

General description:

PARKER series **120.4** solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for general applications with media such as **fuel oils**, **diesel oil or naphtha up to 7°E**, provided they are compatible with the construction materials used. Series **120.4** valves are **normally open** with inlet and outlet in line.

Temperatures:

The working temperature for media is: maximum +160°C minimum -30°C The maximum ambient temperature is: +60°C

Application:

Series **120.4** solenoid valves are ideal for automatic control of fuel oils up to $7^{\circ}E$ on pressurised burners.

ZH14

220-230V-14W 100%ED-

Fittings: G = 1/8" - 1/4"

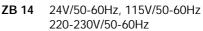
Coils:

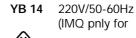
For series **120.4** valves class **"F**" coils **(155°C)** are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB) and class **"H**" coils **(180°C)** are available encapsulated in thermoplastic containing 40% glass fiber (type ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

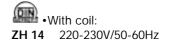
±10% for A.C. power supply

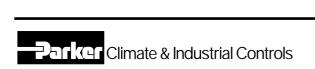

The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency).


The "Z" coils have Faston terminals for **DIN 43650A** connectors with protection to **IP65**. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to **IP67**.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

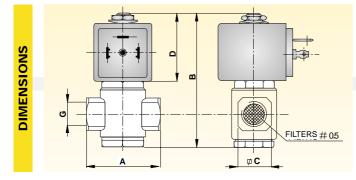

Approvals:



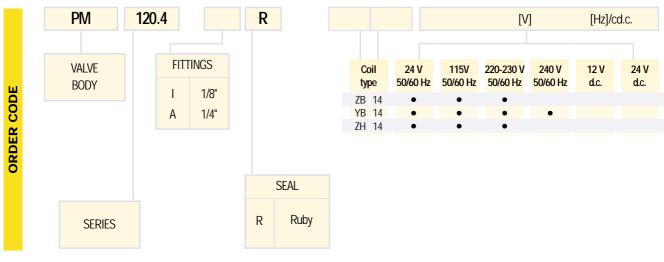
(IMQ pnly for 220V)

ZB 14 220-230V/50-60Hz

•Coil certification:


for: fuel oils (7°E)

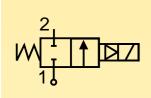
ALS	Valve body: Seals: Factoring tube:	OT58 UNI 5705 brass stamping Ruby	RICAL JRES	Coil f	type]	Pow [W		Insulat. class
TERIA	Enclosing tube: Plunger: Spring:	AISI 304 stainless steel AISI 430F stainless steel AISI 302 stainless steel	ELECTRI FEATUR	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Shading ring:	Copper		ZB 14 YB 14	-	14 14	-	F
				ZH 14	-	14	-	H


7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dif pressure (N	fferential M.O.P.D.)	Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
0	1/8	120.4 I	3,0	0,24	0	30	-	Z - Y	0,350	1
CIF	1/4	120.4 A	3,0	0,24	0	30	-	Z - Y	0,320	1

SPECIFI

Note: 1) NP (nominal pressure): 64 bar.

Fittings Ø G	A	В	С	D
["]	[mm]	[mm]	[mm]	[mm]
1/8	40	75	18	37,5
1/4	40	75	18	37,5



Note: Valve supplied with body (PM) and coil separate. Connectors to be ordered separately.

Solenoid valves for heating

2/2 ways - Normally Closed - Direct Operated

Series 131

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series **131** solenoid valves are direct operated and are used for general applications with media such as **fuel oils up to 2°E**.

Series 131 valves are normally closed.

Temperatures:

The working temperature for media is: maximum +90°C minimum -10°C The maximum ambient temperature is: +60°C

Application:

Series **131** solenoid valves are ideal for automatic control of fuel oils up to 2°E on pressurised burners.

Fittings: G = 1/8"

Coils:

For series **131** valves class **"F**" coils **(155°C)** are available encapsulated in thermoplastic containing 30% glass fiber (types: KT, XT).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

+10% -5% in D.C.

The "K" and "X" coils can be used on a.c. with a frequency of 50 Hz (single frequency).

The "K" coil has Faston terminals for **DIN 43650A** connectors protection to **IP65**.

The "X" coil has Faston terminals for plug with cables (box) with protection to **IP54**.

Installation:

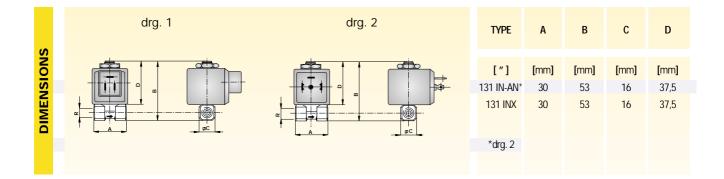
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

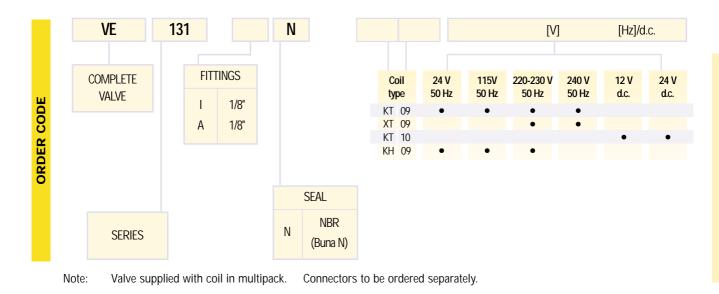
Approvals:

KT 09

 Coil certification: 24V/50Hz 115V/50HZ 230V/50Hz 115V/50HZ

220-230V/50Hz

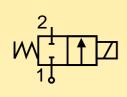

for: fuel oils (2°E)

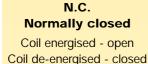

ALS	Valve body: Seals:	OT58 UNI 5705 brass stamping NBR (Buna N)	RES	Coil f	type]	Pow [W		Insulat. class
	Enclosing tube: Plunger:	OT58 UNI 5705 brass stamping 9 SMnPb 23 UNI 5105 steel with nickel	ECTRI	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
Ē	 Spring: 	AISI 302 stainless steel	급료	KT 09	KT10	9	10	F
	Shading ring:	Copper		XT 09 KH 09	-	9 9	-	F

7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max dif pressure (N	ferential 1.O.P.D.)	Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
0	1/8	131 I	1,7	0,086	0	25	22	K - X	0,2	1
CIF	1/8	131 A	2,2	0,120	0	15	13	K - X	0,2	1

SPEC

Note: 1) NP (nominal pressure): 40 bar.





Solenoid valves for heating

2/2 way - Normally Closed - Direct Operated

Series 131.4...G

1 2	1 2

General description:

PARKER series **131.4...G** solenoid valves are direct operated and are used for general applications with **fuel gases**. Series **131.4...G** valves are **normally clo**-

sed.

Temperatures:

The working temperature for media is: maximum +90°C minimum -10°C The maximum ambient temperature is: +60 °C

Application:

Series **131.4...G** solenoid valves are ideal for automatic and safe control of fuel gases where low flow rates are required. Some typical application examples:

Portable hot air generators;

- Portable not all generators,
 Dryers;
- Gas cookers;
- Boilers for caravans and motorhomes:
- Pilot flame control.

Fittings: R = 1/8" - 1/4"

Coils:

For series **131.4...G** valves class **"F"** coils **(155°C)** are available encapsulated in thermoplastic containing 30% glass fiber (type KT).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and +10% - 5% in D.C.

The "K" coil can be used on a.c. with a frequency of 50 Hz (single frequency) and has Faston terminals for **DIN 43650A** connector with protection to **IP65**.

Installation:

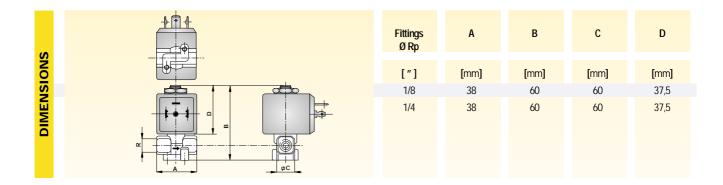
The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body. The valve body has 2 mounting holes with diam. M4 x 7 and centre distance 13×13 .

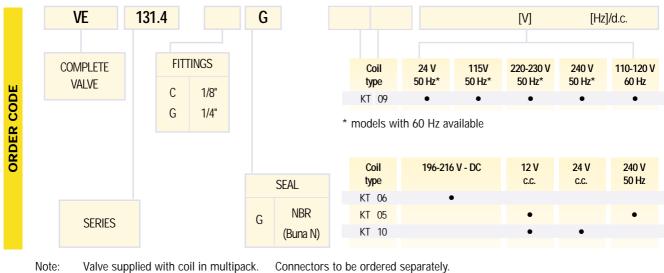
Approvals:

KT 09

	•	Coil certification:
)		220-230V/50Hz

•EN 161	For the solenoid valves with the
	following coil:
KT 09	24V/50Hz,
	115V/50Hz,
	110-120V/60Hz,
	220-240V/50Hz
KT 05	12V D.C.
KT 06	196-216V D.C.

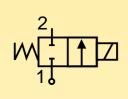

for: fuels gases


ALS	 Valve body: Seals: 	OT58 UNI 5705 brass stamping NBR (Buna N)	ICAL RES	Coil type []		Power [W]		Insulat. class
TERI	Enclosing tube: Plunger:	OT58 UNI 5705 brass stamping 9 SMnPb 23 UNI 5105 steel with nickel	ECTRIC	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MA	Spring:	AISI 302 stainless steel		KT 09	KT 10	9	10	F
	 Shading ring: 	Copper		KT 05	KT 05	5	5	F
				-	KT 06	-	6	F

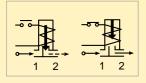
7	Fittings Ø Rp	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max differential pressure (M.O.P.D.)		Coil type	Weight	Notes
	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
0	1/8	131.4 C	4	0,318	0	2	1	К	0,20	1 - 2
<u>Ľ</u>	1/4	131.4 G	4	0,318	0	2	1	К	0,22	1 - 2
EC										

SP

- 1) NP (nominal pressure): 10 bar. Note:
- 2) With coil KT05-KT06 (d.c.) the working pressure is reduced to 0,15 bar.



Valve supplied with coil in multipack. Connectors to be ordered separately.


Solenoid valves for heating

2/2 way - Normally Closed - Direct Operated

Series 140

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series 140 solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for general applications with media such as fuel oils, diesel oil or naphtha up to 7°E, provided they are compatible with the construction materials used. Series 140 valves are normally closed.

Temperatures:

e for media is:
+140°C
-30°C
temperature is:
+50°C
+80°C

Application:

Series 140 solenoid valves are ideal for automatic and safe control of fuel oils up to 7°E on pressurised burners.

Coils:

Fittings: G = 1/8" - 1/4"

For the series 140 class "F" coils (155°C) are available encapsulated in thermoplastic material containing 30% glass fiber (types: ZB, YB), and class "H" coils (180°C) are available encapsulated in thermoplastic material containing 40% of glass fiber (type ZH).

All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply and

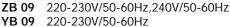
+10% -5% in D.C.

The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency).

The "Z" coils have Faston terminals for DIN 43650A connector with protection to IP65. The "Y" coil has terminals with 2 x 1,000 mm cable and protection to IP67.

The "X" coils has Faston terminals for plug with cable (box) with protection to IP54.

Installation:


The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body. The model 140.4 has no mounting hole.

Approvals:

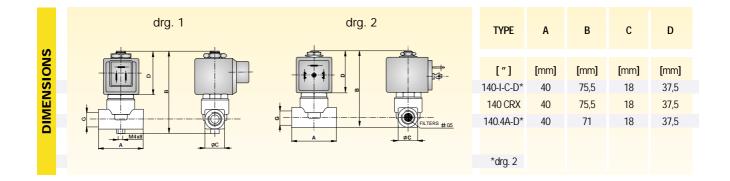
· Coil certification: ZB 09 24V/50-60Hz,115V/50-60Hz, 220-230V/50-60Hz, 240V/50-60Hz ZB 12 12VDC, 24VDC

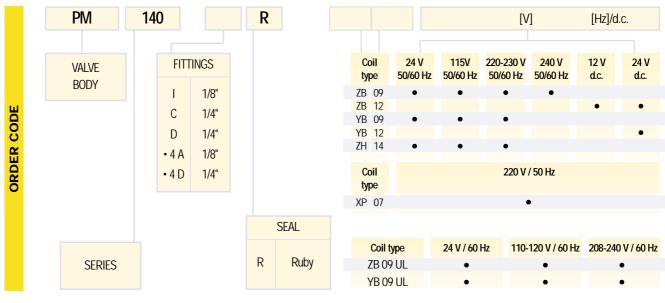
- YB 09 220-230V/50-60Hz
- For the coil:

 UL Recognized Comp. Mark for the coil:

ZB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

YB 09 24V/60Hz, 110-120V/60Hz, 208-240V/60Hz

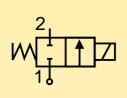



for: fuel oils (7°E)

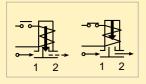
ALS	Seals: Rub	J	RICAL URES	Coil t [Coil type []		Power [W]	
ERIAL		304 stainless steel 430F stainless steel	TUR	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
MAT	Spring: AISI	302 stainless steel	ECT	ZB 09	ZB 12	9	12	F
Ξ	Shading ring: Cop	per	급표	YB 09	YB 12	9	12	F
	5 5 1		_	ZH 14	-	14	-	Н
				XP 07	-	7	-	F

7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max differential pressure (M.O.P.D.)		Coil type	Weight	Notes
ATIO	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
C S	1/8	140 I	2,5	0,192	0	30	17	ZB - YB	0,340	1
Ē.	1/4	140 C	2,5	0,192	0	30	17	ZB - YB - XP	0,330	1
U	1/4	140 D	3,0	0,258	0	30	12	ZB - YB	0,330	1
Ш	1/8	140.4 A	3,0	0,240	0	30	-	ZH	0,320	1
SP	1/4	140.4 D	3,0	0,240	0	30	-	ZH	0,320	1

Note: 1) NP (nominal pressure): 64 bar.



Note: Valve supplied with body (PM) and coil separate. Connectors to be ordered separately.


Solenoid valves for heating

2/2 way - Normally Closed - Direct Operated

Series 153

N.C. Normally closed Coil energised - open Coil de-energised - closed

General description:

PARKER series **153** solenoid valves are direct operated and do not require a minimum differential pressure to operate. They are used for general applications with media such as **fuel oils up to 2°E**. Series **153** valves are **normally closed**.

Temperatures:

The working temperature for media is:						
maximum	+140°C					
minimum	-10°C					
The maximum ambient temperatu	ure is:					
with class "F" coils	+50°C					
with class "H" coils	+80°C					

Application:

Series **153** solenoid valves are ideal for automatic control of fuel oils up to **2°E**. Some typical application examples:

Heating systems;

- Diesel oil distribution systems;
- Tank level control.

Fittings: G = 3/8" - 1/2"

Coils:

For series **153** valves class **"F"** (**155°C**) coils are available encapsulated in thermoplastic containing 30% glass fiber (types: ZB, YB) and class **"H"**coils (**180°C**) are available encapsulated in thermoplastic containing 40% of glass fiber (type ZH). All the coils are for continuous service, 100% E.D.

The rated voltage tolerance is:

±10% for A.C. power supply

and +10% -5% in D.C.

The "Z" and "Y" coils can be used on a.c. with a frequency of 50/60 Hz (dualfrequency).

The "Z" coils have Faston terminals for **DIN 43650A** connector with protection to **IP65**. The "Y" coil has terminals with 2 x 1,000 mm cables with protection to **IP67**.

Installation:

The valves can be mounted in any position without jeopardising their operation. It is however advisable to install them with the coil in a vertical position above the body.

Approvals:

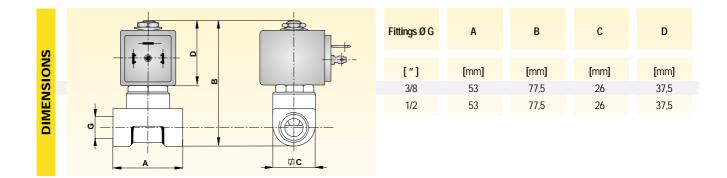
•Coil certification: 4 24V/50-60Hz, 115V/50-60Hz

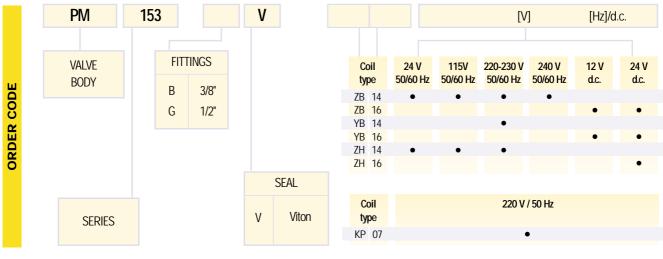
- ZB 14 24V/50-60Hz, 115V 220-230V/50-60Hz
- **ZB 16** 12V-DC, 24V-DC
- YB 14 220V/50-60Hz
- **YB 16** 24V-DC

•For the coil: **ZB 14** 220-230V/50-60Hz

ZB 14 220-2300/50-60HZ

•Fire brigade approval, Home Ministry, Fire-Fighting Research Centre.


for: fuel oils (2°E)


IALS	Valve body: Seals:	OT58 UNI 5705 brass stamping Viton	ICAL RES	Coil type []		Power [W]		Insulat. class
R	Enclosing tube:	AISI 304 stainless steel	¥ 2	A.C.(~)	D.C.(=)	A.C.(~)	D.C.(=)	
F	Plunger:	AISI 430F stainless steel	EAL	ZB 14	ZB 16	14	16	F
MATI	 Spring: 	AISI 302 stainless steel		YB 14	YB 16	14	16	F
	 Shading ring: 	Copper		ZH 14	ZH 16	14	16	Н
	5 5	••		KP 07	-	7	-	F

7	Fittings Ø G	Valve type	Nominal orifice Ø	Flow coefficient Kv	Minimum pressure	Max differential pressure (M.O.P.D.)		Coil type	Weight	Notes
ATION	["]	[]	[mm]	[m³/h]	[bar]	in A.C.(~) [bar]	in D.C.(=) [bar]	[]	[Kg]	[]
C S	3/8	153 B	5	0,612	0	2	-	К	0,390	1
Ē	1/2	153 G	5	0,612	0	2	-	К	0,350	1
ECI	3/8	153 B	5	0,612	0	5	1,5	Z - Y	0,390	1
Ĕ	1/2	153 G	5	0,612	0	5	1,5	Z - Y	0,350	1
S										

Note:

1) NP (nominal pressure): 10 bar.

Note: Valve supplied with body (PM) and coil separate. Connectors to be ordered separately.

Total or partial reproduction of text, drawings or photographs is prohibited unless expressly authorised in writing by Parker Hannifin S.p.A.

The text, drawings and photographs contained in this catalogue are approximate and may be changed at any time, without notice, as new technology appears.

Parker Hannifin S.p.A.

Via E. Fermi, 5 20060 GESSATE (MI) ITALY Tel.: + 39 - 02 - 95 125.1 Fax: + 39 - 02 - 95 38 20 51 Cat.: GP / GB 05/02 - 901002