

CE

100/163	÷	325 kW
116/232	÷	442 kW
145/290	÷	581 kW
232/465	÷	814 kW
349/698	÷	1163 kW
465/930	÷	1395 kW
	116/232 145/290 232/465 349/698	100/163 ÷ 116/232 ÷ 145/290 ÷ 232/465 ÷ 349/698 ÷ 465/930 ÷

The RLS series of burners covers a firing range from 100 to 1395 kW, and they have been designed for use in hot or superheater water boilers, hot air or steam generators, diathermic oil boilers.

Operation is "two stage"; the burners are fitted with an electronic device STATUS PANEL, which supplies complete diagnostic: hour meter, ignition meter, identification of trouble shooting.

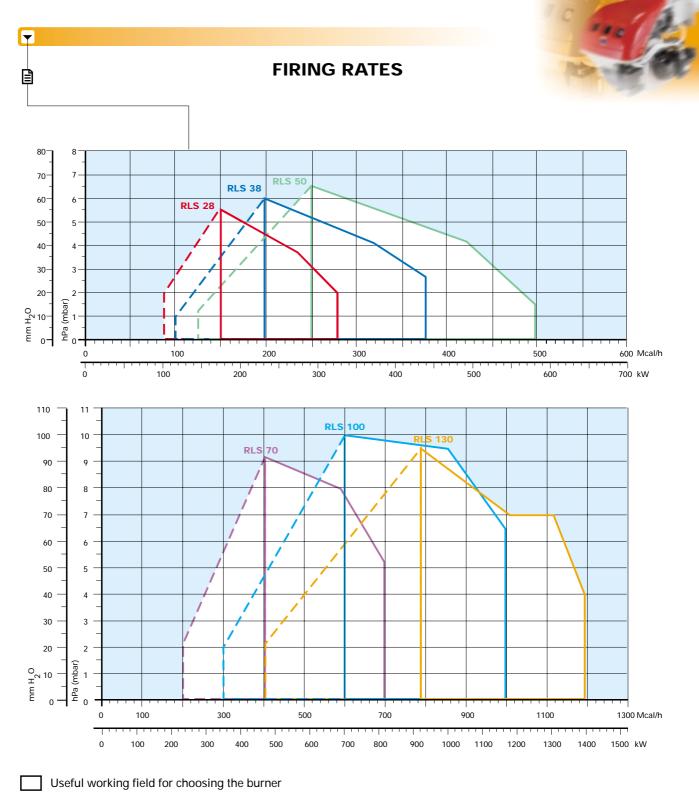
Optimisation of sound emissions is guaranteed by the use of fans with forward inclined blades and sound deadening material incorporated in the air suction circuit. The elevated performance of the fans and combustion head guarantee flexibility of use and excellent working at all firing rates.

The exclusive design ensures reduced dimensions, simple use and maintenance. A wide range of accessories guarantees elevated working flexibility.

E

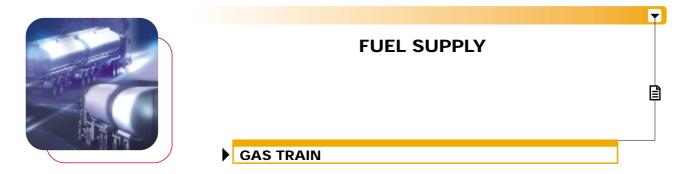
TECHNICAL DATA

5												
	Model			▼ RLS 28	▼ RLS 38	▼ RLS 50	▼ RLS 70	▼ RLS 100	▼ RLS 130			
	Operation			Two stage 2:1								
	Modulating ratio	at max. ouput				2:	1					
	Servomotor	type			LKS 210 - 08			LKS 210 -10				
		run time	S			Ę						
	Heat output		kW	100/163-325	116/232-442	145/290-581	232/465-814		465/930-1395			
			Mcal/h	86/140-303	100/200-380	125/249-500	200/400-700	300/600-1000	400/800-1200			
	Working tempera		°C min/max			0/						
	Light oil	Net calorific value	kWh/kg	11,8								
		Viscosity at 20°C	mm ² /s (cSt)			4.						
		Delivery	kg/h	8/14-28 10/20-37 1		12/25-49	20/39-69	30/59-99	39/79-118			
	_	Max temperature	°C		60		0					
	Pump	type			AL 65B			AJ 6CC				
		delivery	kg/h		63 (at 15 bar)		-	134 (at 20 bar)				
e	Atomised pressu		bar 3			1						
Fuel / air data	G20	Net calorific value	kWh/Nm ³			1						
air		Density	kg/Nm ³	10/1/ 22 5	40/00 44	0,		25 /70 44/	44 5 100 400 5			
el /	0.05	Delivery	Nm ³ /h	10/16-32,5	12/23-44	14,5/29-58	23/46,5-81	35/70-116	46,5/93-139,5			
3	G25	Net calorific value	kWh/Nm ³			8						
		Density	kg/Nm ³	40/40 00	42/07 54	0, ⁻ 17/33-68		41/81-135	54/400 4/0			
	LPG	Delivery Net calorific value	Nm ³ /h kWh/Nm ³	12/19-38	13/27-51		27/54-95	41/81-135	54/108-162			
	LPG						25,8					
		Density	kg/Nm ³ Nm ³ /h	4/6-13 4/9-17		2,02 6/11-23 9/18-32		14/27-45	18/36-54			
	Fan	Delivery		4/0-13					10/30-34			
	Air temperature		type max °C	Centrifugal - with reverse curve blades 60								
	•		Ph / Hz / V									
	Electrical supply Auxiliary electrical supply		Ph / Hz / V	1/50/230 (±10%) 3N/50/230-400 (±10%) 1/50/230 (±10%)								
	Control box		type	LFL 1.333								
	Total electrical po	wer	kW	0,53	0,76	0,91	1,8	2,2	3			
	Auxiliary electrica		kW	0,19	0,25	0,17	0,33	0,33	0,43			
	Protection level		IP	0,11,	0,20	4		0,00	0,10			
a	Fan electrical mo	tor power	kW	0,25	0,42	0,65	1,1	1,5	2,2			
dat	Rated fan motor	-	A	2,1	2,9	3 -1,7	4,8 - 2,8	5,9 - 3,4	8,8 - 5,1			
cal	Fan motor start o		А	4,8	11	13,8-8	22,6 -13,2	29,5 -17	52,8 - 30,6			
Electrical data	Fan motor protect		IP		44	.,	55	•	4			
Ele	Pump electric mo		kW		0,09			0,37				
	Rated pump mot	-	Α		0,8			2,4				
	Pump motor star		А	-	-	-	-		-			
	Pump motor prot	ection level	IP			4	4					
	Ignition transform	ner	V1- V2			230 V -	2 x 5 kV					
			1 - 2			1,9 A -	30 mA					
	Working				Intermi	ttent (at least o	one stop every	24h)				
	Sound pressure		dBA	68	70	72	74	77,5	80			
	Sound power		w	-	-	-	-	-	-			
s	Light oil	CO emissions	mg/kWh			< 2	20					
Emissions		Grade of smoke indicator	N° Bacharach			<	< 1					
nis		CxHy emissions	mg/kWh			< 1	< 10					
Ξ		NOx emissions	mg/kWh			< 1	90					
	G20	CO emissions	mg/kWh			< 1	15					
		NOx emissions	mg/kWh			< 1	80					
val	Directive				90.	/396 - 89/336 -	73/23 - 92/42 E	EC				
Approval	Conforming to					EN 267	- EN 676					
Ap	Certifications			(CE 0063 AR 463	7	CE 006	3 AS 4863 - DIN	5G 835/97 M			


Reference conditions:

Ambient temperature: 20°C Pressure: 1000 mbar Altitude: 100 m a.s.l. Sound pressure level measured in manufacturers combustion laboratory, with burner operating on test boiler and at maximum rated output

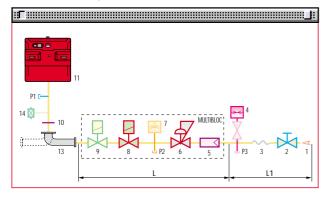
Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.


Y

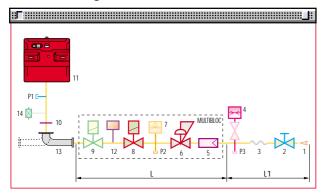
B

Modulating range

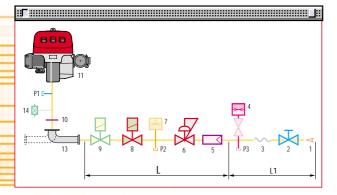
Test conditions conforming to EN 267 - EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.


The gas trains are fitted with a regulating valve to adjusts fuel delivery in relation to heat required. This valve is controlled by the two-

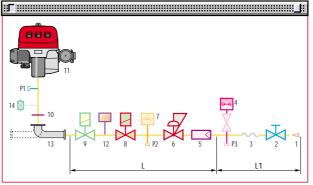
stages device fitted on the burner. Fuel can be supplied either from the right or left sides, on the basis of the application requirments. A maximum gas pressure switch stops the burner in case of excess pressure in the supply line. The gas train can be selected to best fit system requirments depending on the fuel output and

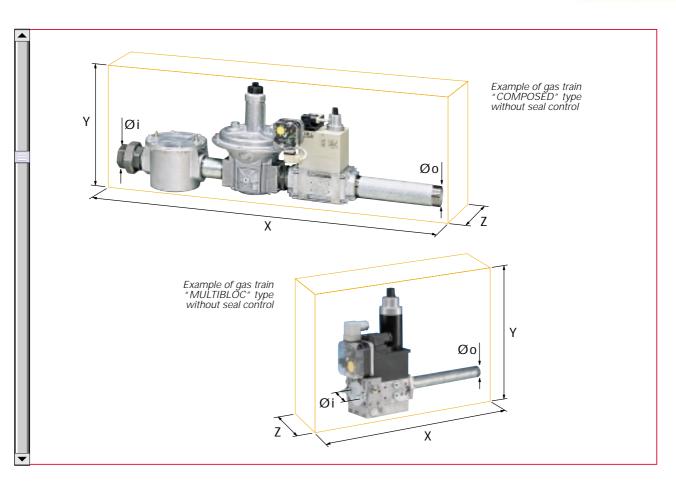

pressure in the supply line. The gas trains can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).

E Example of gas inlet pipe burners for RLS 70-100-130


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control




COMPOSED gas train without seal control

1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical). Three adjustments: - ignition delivery (rapid opening) - 1 st stage delivery (slow opening) - 2 nd stage delivery ((slow opening)
10	Gasket and flange supplied with the burner
11	Burner
12	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
13	Gas train-burner adapter.
14	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

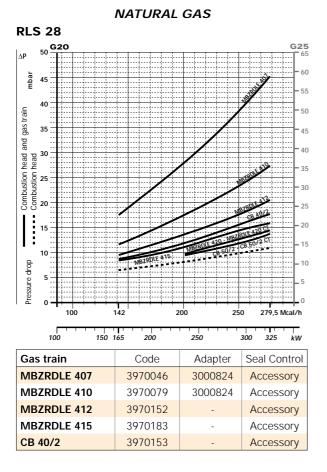
Gas trains are approved by standard EN 676 together with the burner.

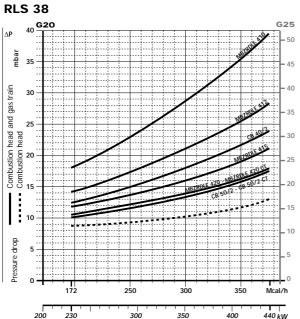
-

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RLS burners, intake and outlet diameters and seal control if fitted.

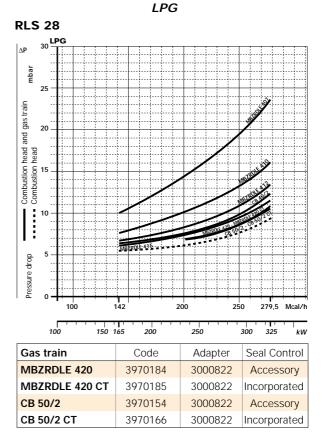
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

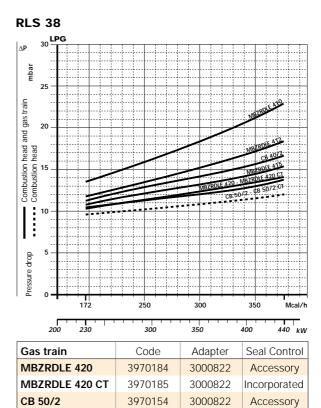
The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.


	Name	Code	Øi	Øo	X mm	Y mm	Z mm	Seal Control
	MBZRDLE 407	3970046	3/4″	3/4″	195	235	120	-
ls S S S S S S S S S S S S S S S S S S S	MBZRDLE 410	3970079	1″	3/4″	195	235	145	-
MULTIBLOC GAS TRAINS	MBZRDLE 412	3970152	1″ 1/4	1″ 1/2	433	290	145	-
JLTI AS T	MBZRDLE 415	3970183	1″ 1/2	121/2	523	346	100	-
M S M	MBZRDLE 420	3970184	2″	2″	523	400	100	-
	MBZRDLE 420 CT	3970185	2″	2″	523	400	227	Incorporated
	CB 40/2	3970153	1″ 1/2	1″ 1/2	1013	346	195	-
۵,	CB 50/2	3970154	2″	2″	1150	354	250	-
COMPOSED GAS TRAINS	CB 50/2 CT	3970166	2″	2″	1150	354	320	Incorporated
TRO TRO	CBF 65/2	3970155	DN 65	DN 65	1166	475	285	-
GAS	CBF 65/2 CT	3970167	DN 65	DN 65	1166	475	285	Incorporated
0	CBF 80/2	3970156	DN 80	DN 80	1246	425	285	-
	CBF 80/2 CT	3970168	DN 80	DN 80	1246	425	285	incorporated



PRESSURE DROP DIAGRAMS


The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

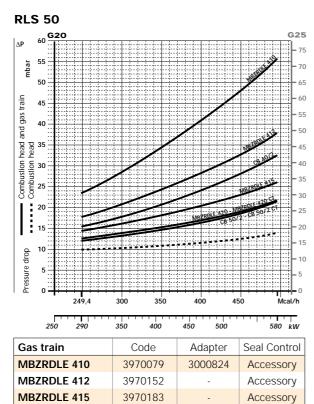

The value thus calculated represents the minimum required input pressure to the gas train.

Gas train	Code	Adapter	Seal Control
MBZRDLE 410	3970079	3000824	Accessory
MBZRDLE 412	3970152		Accessory
MBZRDLE 415	3970183	-	Accessory
CB 40/2	3970153	-	Accessory

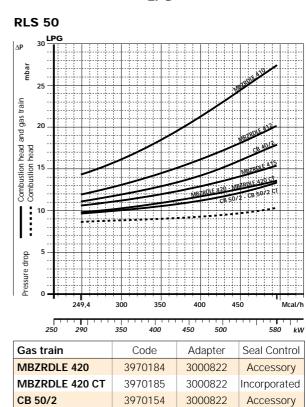
3970166

3000822

Incorporated

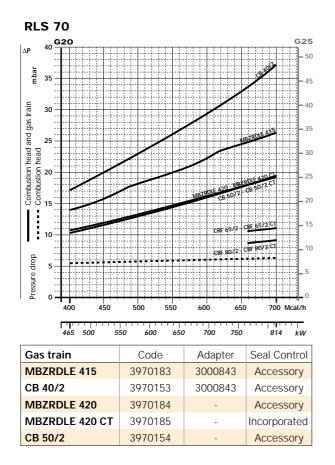

CB 50/2 CT

▼



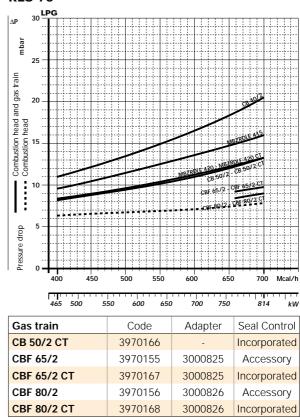
CB 40/2

NATURAL GAS

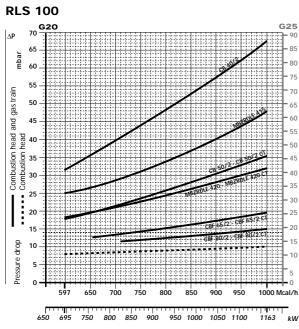

3970153

3970166

3000822

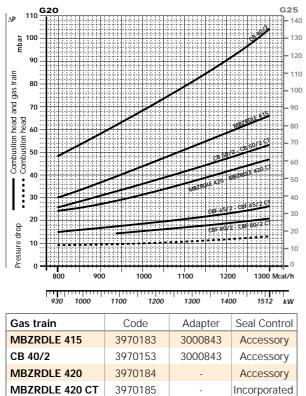

Incorporated

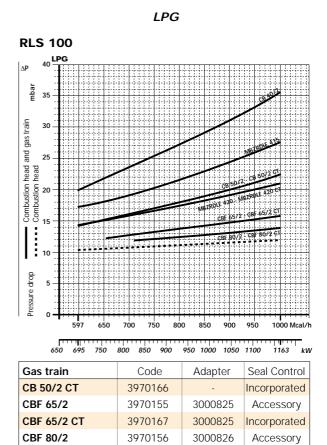
RLS 70

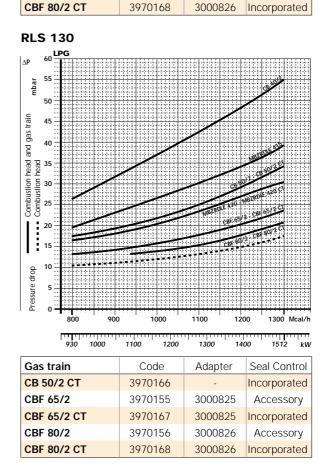

CB 50/2 CT

Accessory

LPG


NATURAL GAS


Gas train	Code	Adapter	Seal Control	
MBZRDLE 415	3970183	3000843	Accessory	
CB 40/2	3970153	3000843	Accessory	
MBZRDLE 420	3970184	-	Accessory	
MBZRDLE 420 CT	3970185	-	Incorporated	
CB 50/2	3970154	-	Accessory	



CB 50/2

3970154

note Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

Accessory

▼

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

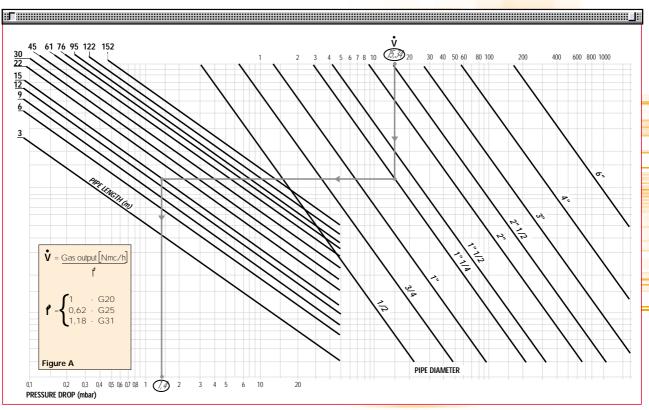
Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\check{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used	G25
	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	- conversion coefficient	0.62 (see figure A)
- equivalent	methane output $\bigvee^{\bullet} = \left[\frac{9.51}{0.62} \right]$] = 15.34 mc/h

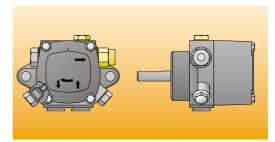

- once the value of 15.34 has been identified on the output scale (\dot{v}), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;

- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale; - subtract the determined pressure drop from the meter pressure, the correct pressure level will be found

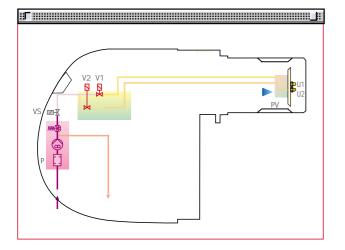
for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

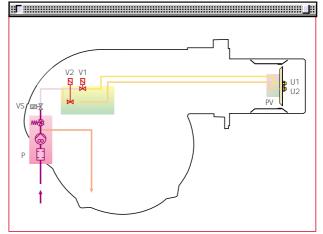

▼

HYDRAULIC CIRCUIT

The burners are fitted with three valves (a safety valve and two oil delivery valves) along the oil line from the pump to the nozzle.


A thermostatic control device, on the basis of required output, regulates oil delivery valves opening, allowing light oil passage trough the valves and to the nozzle. Delivery valves open contemporary to the air damper opening, controlled by a servomotor.

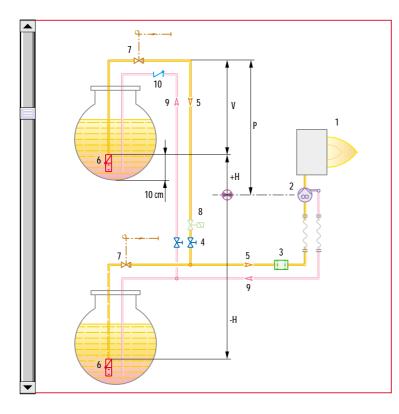
The pumping group is fitted whit a pump, an oil filter and a regulating valve: through this it is possible to manaully adjusts atomised pressure, which in factory is preset at 12 bar.


Example of light oil pump of RLS 70-100-130 burners

RLS 28-38-50

Р	Pump with filter and pressure regulator on the output circuit
VS	Safety valve on the output circuit
V1	1st stage valve
V2	2nd stage valve
PV	Nozzle holder
U1	1st stage nozzle
U2	2nd stage nozzle

RLS 70-100-130


▼

DIMENSIONING OF THE FUEL SUPPLY LINES

The fuel feed must be completed with the safety devices required by the local norms.

The table shows the choice of piping diameter for the various burners, depending on the difference in height between the burner and the tank and their distance.

		MAXIMUM EQU	JIVALENT LENGT	H FOR THE PIPING	i L[m]			
Model	•	RLS 28 – 38 -50		▼ RLS 70 -100 -130				
Piping diameter	8mm	10mm	12mm	12mm	14mm	16mm		
+H, -H (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)		
+4,0	35	90	152	71	138	150		
+3,0	30	80	152	62	122	150		
+2,0	26	69	152	53	106	150		
+1,5	22	54	141	49	98	150		
+1,0	21	59	130	44	90	150		
+0,5	19	53	119	40	82	150		
0	17	48	108	36	74	137		
-0,5	15	43	97	32	66	123		
-1,0	13	37	83	28	56	109		
-1,5	11	32	74	24	49	95		
-2,0	9	27	64	19	42	81		
-3,0	4	16	42	10	26	53		
-4,0	-	6	20	-	10	25		

Н	Difference in height pump-foot valve
Ø	Internal pipe diameter
Ρ	Height ≤ 10 m
V	Height ≤ 4 m
1	Burner
2	Burner pump
3	Filter
4	Manual shut off valve
5	Suction pipework
6	Bottom valve
7	Remote controlled rapid manual shutoff valve (compulsory in Italy)
8	Type approved shut off solenoid (compulsory in Italy)
9	Return pipework
10	Check valve

▶ note With ring distribution oil systems, the feasible drawings and dimensioning are the responsibility of specialised engineering studios, who must check compatibility with the requirements and features of each single installation.



The ventilation circuit produces low noise levels with high performances

in pressure and air delivery, in spite of compact dimensions. The use of reverse curve blades and sound proofing material keeps noise level very low.

The result is a powerful yet quiet burner with increased combustion performance.

A servomotor allows to have a right air flow in any operational state and the closure of the air damper when burner is in standby.

Y

B

Y

B

Example of the servomotor for air regulation on RLS 70-100-130 burners.

COMBUSTION HEAD

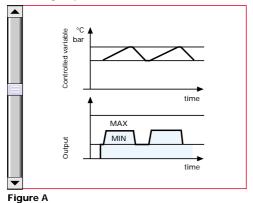
VENTILATION

Different lenghts of the combustion head can be supplied (with application of a specific "extended

head kit") for the RLS series of burners. The selection depends on the thickness of the front panel and on the type of boiler.

Depending on the type of generator, check that the penetration of the head into the combustion chamber is correct. The internal position of the combustion head can easily be adjusted to the maximum defined output by regulating a screw fixed to the flange.

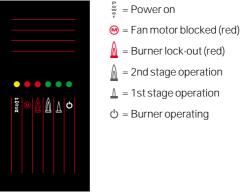
Example of RLS 130 burners combustion head.

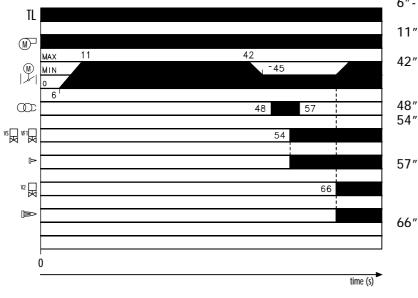

Dimensions of the flame

With two-stage operation, the RLS series of burners can follow the temperature load requested by the system. A modulation ratio of 2:1 is reached thanks to the nozzles when burner is supplied with light oil and to the two-stage gas train when burner is supplied from gas; the air is adapted to the servomotor rotations.

On "two-stage" operation, the burner gradually adjusts output to the requested level, by varying between two pre-set levels (see figure A).

Two stage operation




Figure A: Layout of "Led Panel"

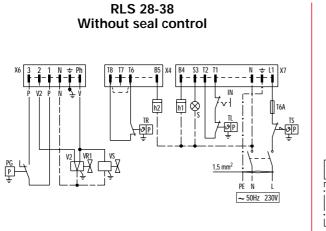
0″

The RLS burners are equipped with an exclusive electronic device "Led panel" that provides the six data items signalled by the leds lighting up of figure B.

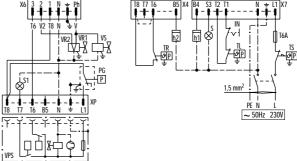
FIRING

RLS 28 - 38 - 50 - 70 - 100 - 130

- Thermostat closes. The motor starts running.
- 6"-11" The servomotor opens the air damper.
- 11"-42" Pre-purge with air damper open.
- 42"-45" The servomotor takes the air damper to the firing position.
 - Pre-ignition Solenoid security valve VS and V1 1st stage valve open; 1st stage flame
 - After 3" firing the ignition transformer switches off (if flame is detected, otherwise there is a lock-out)
 - If heat request is not yet satisfied, 2nd stage solenoid valve V2 opens and at the same time servomotor open completely the air damper. The starting cycle comes to an end. 2nd stage flame.


ELECTRICAL CONNECTIONS To be made by the installer

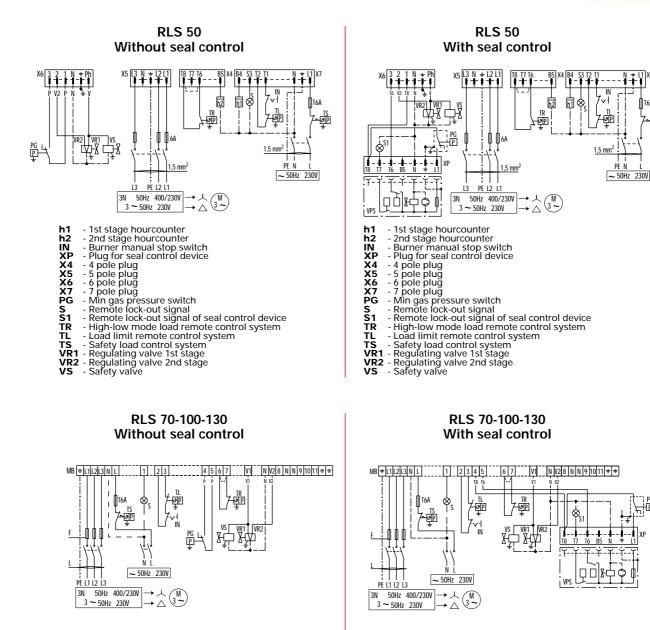
Electrical connections must be made by qualified and skilled personnel, according to the local norms.


Example of the terminal board for electrical connections for RLS 28-38 burner models

TWO STAGE OPERATION

- h1 1st stage hourcounter
 h2 2nd stage hourcounter
 IN Burner manual stop switch
 XP Plug for seal control device
 X4 4 pole plug
 X6 6 pole plug
 X7 7 pole plug
 PG Min gas pressure switch
 S Remote lock-out signal
 S1 Remote lock-out signal of seal control device
 TR High-low mode load remote control system
 TL Load limit remote control system
 TS Safety load control system
 VR1 Regulating valve 1st stage
 VR2 Regulating valve 2nd stage
 VS Safety valve

RLS 28-38 With seal control



- h1 1st stage hourcounter
 h2 2nd stage hourcounter
 Burner manual stop switch
 XP Plug for seal control device
 X4 4 pole plug
 X6 6 pole plug
 X7 7 pole plug
 PG Min gas pressure switch
 S Remote lock-out signal
 S1 Remote lock-out signal of seal control device
 TR High-low mode load remote control system
 TL Load limit remote control system
 TS Safety load control system
 VR1 Regulating valve 1st stage
 VR2 Regulating valve 2nd stage
 VS Safety valve

Y

Ē

-

- IN Burner manual stop switch
 XP Plug for seal control device
 MB Burner terminal board
 PG Min gas pressure switch
 S Remote lock-out signal
 Statistication Remote lock-out signal of seal control device
 TR High-low mode load remote control system
 TL Load limit remote control system
 TS Safety load control system
 VR1 Regulating valve 1st stage
 VR2 Regulating valve 2nd stage
 VS Safety valve

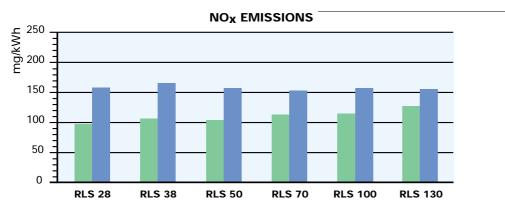
- IN
- XP MB PG S S1

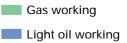
- Burner manual stop switch
 Plug for seal control device
 Burner terminal board
 Min gas pressure switch
 Remote lock-out signal
 Remote lock-out signal of seal control device
 High-low mode load remote control system
 Load limit remote control system
 Regulating valve 1st stage
 Regulating valve 2nd stage
 Safety valve

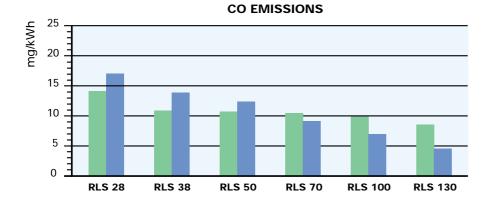
- TR TL TS VR1 VR2
- vs

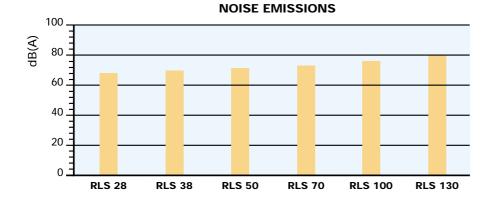
The following table shows the supply lead sections and the type of fuse to be used.

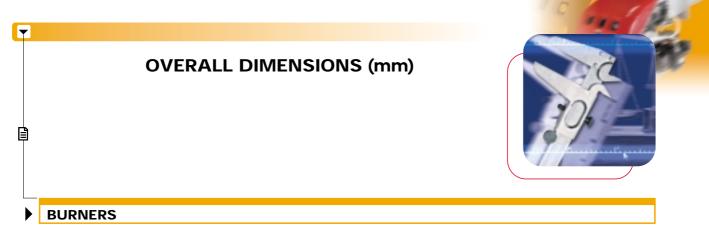
Model		▼RLS 28	▼RLS 38	▼ RL	S 50	▼ RI	_S 70	▼ RL	S 100	▼ RL	S 130
		230V	230V	230V	400V	230V	400V	230V	400V	230V	400V
F	А	T6	Τ6	T10	T6	T10	T6	T10	Т6	T10	Т6
L	mm²	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5

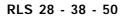

Table A

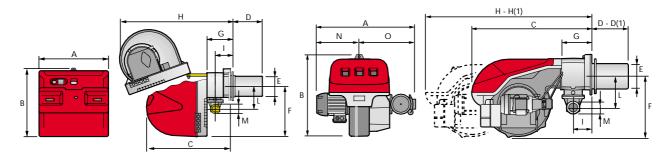

ΗĎ

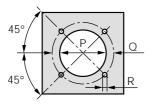

EMISSIONS



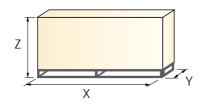

 $\overline{\mathbf{Y}}$


È


The emission data has been measured in the various models at maximum output, according to EN 676 and EN 267 standard.


RLS 70 - 100 - 130

Model	А	В	С	D	D(1)	Е	F	G	Н	H(1)	Ι	L	М	Ν	0
▶ RLS 28	476	474	580	191	326	140	352	164	810	810	108	168	1″ 1/2	-	-
▶ RLS 38	476	474	580	201	336	152	352	164	810	810	108	168	1″ 1/2	-	-
▶ RLS 50	476	474	580	216	351	152	352	164	810	810	108	168	1″ 1/2	-	-
▶ RLS 70	691	555	840	250	385	179	430	214	1161	1361	134	221	2″	296	395
▶ RLS 100	707	555	840	250	385	179	430	214	1161	1361	134	221	2″	312	395
▶ RLS 130	733	555	840	250	385	189	430	214	1161	1361	134	221	2″	338	395


(1) Dimension with "extended head".

BURNER - BOILER MOUNTING FLANGE

Model	Р	Q	R
▶ RLS 28	160	224	M8
▶ RLS 38	160	224	M8
▶ RLS 50	160	224	M8
▶ RLS 70	185	275-325	M12
▶ RLS 100	195	275-325	M12
▶ RLS 130	195	275-325	M12

PACKAGING

Model	Х	Y	Z	kg
▶ RLS 28	872	540	550	43
▶ RLS 38	872	540	550	45
▶ RLS 50	872	540	550	46
▶ RLS 70	1190	692	740	70
▶ RLS 100	1190	692	740	73
▶ RLS 130	1190	692	740	76

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- ▶ Fit the gas train choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook
- Refit the burner casing to the slide bars.
- ▶ Install the nozzle choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook.
- Check the position of the electrodes.
- Close the burner, sliding it up to the flange, keeping it slightly raised to avoid the flame stability disk rubbing against the blast tube.

ELECTRICAL AND HYDRAULIC CONNECTIONS AND START UP

- The burners are supplied for connection to two pipes fuel supply system.
- Connect the ends of the flexible pipes to the suction and return pipework using the supplied nipples.
- Make the electrical connections to the burner following the wiring diagrams included in the instruction handbook.
- Prime the pump by turning the motor (after checking rotation direction if it is a three phase motor).
- Adjust the gas train for first start
- On start up, check:
- ▶ Pressure pump and valve unit regulator (to max. and min.)
- Gas pressure at the combustion head (to max. and min. output)
- Combustion quality, in terms of unburned substances and excess air.

Ŧ

₿

ACCESSORIES

Nozzles type 60° B

T

₿

The nozzles must be ordered separately. The following table shows the features and codes on the basis of the maximum required fuel output.

Nozzles type 60° B								
Burner	GPH	Rate at 10 bar	d output (ko at 12 bar	g/h) Nozzle at 14 bar	Code			
RLS 28	2.00				3042126			
	2,00	7,7	8,5	9,2				
RLS 28-38	2,50	9,6	10,6	11,5	3042140			
RLS 28-38-50	3,00	11,5	12,7	13,8	3042158			
RLS 28-38-50	3,50	13,5	14,8	16,1	3042162			
RLS 38-50	4,00	15,4	17	18,4	3042172			
RLS 38-50	4,50	17,3	19,1	20,7	3042182			
RLS 38-50-70	5,00	19,2	21,2	23	3042192			
RLS 50-70	5,50	21,1	23,3	25,3	3042202			
RLS 50-70	6,00	23,1	25,5	27,7	3042212			
RLS 50-70	6,50	25	27,6	30	3042222			
RLS 70-100	7,00	26,9	29,7	32,3	3042232			
RLS 70-100	7,50	28,8	31,8	34,6	3042242			
RLS 70-100	8,00	30,8	33,9	36,9	3042252			
RLS 70-100	8,50	32,7	36,1	39,2	3042262			
RLS 70-100-130	9,50	36,5	40,3	43,8	3042282			
RLS 70-100-130	10,00	38,4	42,4	46,1	3042292			
RLS 70-100-130	11,00	42,3	46,7	50,7	3042312			
RLS 100-130	12,00	46,1	50,9	55,3	3042322			
RLS 100-130	13,00	50	55,1	59,9	3042332			
RLS 100-130	14,00	53,8	59,4	64,5	3042352			
RLS 100-130	15,00	57,7	63,6	69,2	3042362			
RLS 100-130	16,00	61,5	67,9	73,8	3042382			
RLS 130	17,00	65,4	72,1	78,4	3042392			

Extended heads

"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The kits available for the various burners, giving the original and the extended lengths, are listed below.

	Extended	xtended heads		
Burner	'Standard' head length (mm)	'Extended' head length (mm)	Kit code	
RLS 28	191	326	3010154	
RLS 38	201	336	3010155	
RLS 50	216	351	3010156	
RLS 70	250	385	3010162	
RLS 100	250	385	3010163	
RLS 130	250	385	3010164	

Degasing unit

To solve problem of air in the oil sucked, two versions of degassing unit are available.

	Degasing unit	
Burner	Degasing unit with filter Code	Degasing unit without filter Code
RLS	3010055	3010054

▼

T

₿

GAS TRAIN ACCESSORIES

Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available.

	Seal control kit					
Burner	Gas train	Kit code				
	MBZRDLE 407 - MBZRDLE 410 -	2010122				
RLS 28	MBZRDLE 412	3010123				
1123 20	MBZRDLE 415 - MBZRDLE 420 - CB 40/2 -	2010125				
	CB 50/2	3010125				
RLS 38	MBZRDLE 410 - MBZRDLE 412	3010123				
	MBZRDLE 415 - MBZRDLE 420 - CB 40/2 -	2010125				
	CB 50/2	3010125				
	MBZRDLE 410 - MBZRDLE 412	3010123				
RLS 50	MBZRDLE 415 - MBZRDLE 420 - CB 40/2 -	2010125				
	CB 50/2	3010125				
RLS 70	MBZRDLE 415 - MBZRDLE 420	3010125				
RL370	CB 40/2 - CB 50/2 - CBF 65/2 - CBF 80/2	3010125				
RLS 100	MBZRDLE 415 - MBZRDLE 420	3010125				
KLS IUU	CB 40/2 - CB 50/2 - CBF 65/2 - CBF 80/2	3010123				
RLS 130	MBZRDLE 415 - MBZRDLE 420	3010125				
KL3 130	CB 40/2 - CB 50/2 - CBF 65/2 - CBF 80/2	3010123				

Stabiliser spring

▼

Accessory springs are available to vary the pressure range of the gas train stabilisers.

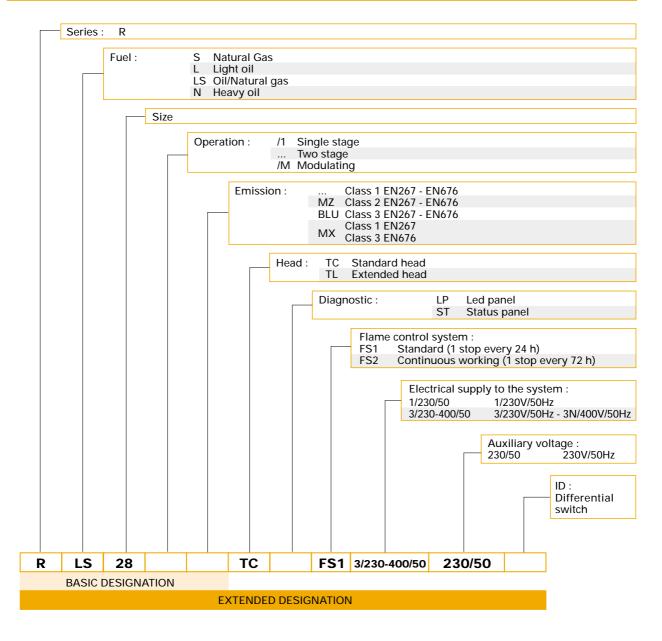
2		
<	\rightarrow	
<	\geq	
	\geq	
<	\rightarrow	
C	\geq	
C	$ \ge $	
C	\geq	
C		

Stabiliser spring						
Gas train	Spring	Code				
CBF 65/1 - CBF 80/1	Red from 25 to 55 mbar	3010133				
CBF 65/1 - CBF 80/1	Black from 60 to 110 mbar	3010135				
CBF 65/1 - CBF 80/1	Pink from 90 to 150 mbar	3090456				

Adapters

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner.

Adapters						
Burner	Gas train	Dimensions	Adapter code			
	MBZRDLE 407 MBZRDLE 410	3/4" 1" 1/2	3000824			
RLS 28	CB 50/2 - CB 50/2 CT MBZRDLE 420 MBZRDLE 420 CT	2" 1" 1/2	3000822			
	MBZRDLE 410	3/4" 1" 1/2	3000824			
RLS 38	MBZRDLE 420 MBZRDLE 420 CT CB 50/2 - CB 50/2 CT	2" 1" 1/2	3000822			
	MBZRDLE 410	3/4" 1" 1/2	3000824			
RLS 50	MBZRDLE 420 MBZRDLE 420 CT CB 50/2 - CB 50/2 CT	2" 1" 1/2	3000822			
	MBZRDLE 415 - CB 40/2	1" 1/2	3000843			
RLS 70	CBF 65/2 - CBF 65/2 CT	DN 65 2"1/2 2"2" 2"	3000825			
	CBF 80/2 - CBF 80/2 CT	DN 80 2"1/2 2"	3000826			
	MBZRDLE 415 - CB 40/2	1" 1/2 2"	3000843			
RLS 100	CBF 65/2 - CBF 65/2 CT	DN 65 2"1/2 2"2"	3000825			
	CBF 80/2 - CBF 80/2 CT	DN 80 2"1/2 2"	3000826			
	MBZRDLE 415 - CB 40/2	1" 1/2 2"	3000843			
RLS 130	CBF 65/2 - CBF 65/2 CT	DN 65 2"1/2	3000825			
	CBF 80/2 - CBF 80/2 CT	DN 80 2"1/2 2"	3000826			
			RIELLO			


SPECIFICATION

Y

B

A specific index guides your choice of burner from the various models available in the RLS series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

LIST OF AVAILABLE MODELS

RLS	28	тс	LP	FS1	1/230/50	230/50
RLS	38	TC	LP	FS1	1/230/50	230/50
RLS	50	TC	LP	FS1	3/230-400/50	230/50
RLS	70	TC	LP	FS1	3/230-400/50	230/50
RLS	100	TC	LP	FS1	3/230-400/50	230/50
RLS	130	TC	LP	FS1	3/230-400/50	230/50

Other versions are available on request.

PRODUCT SPECIFICATION

Burner:

▼

Monobloc forced draught dual fuel burner, two stage operation, made up of: - Air suction circuit lined with sound-proofing material

- Fan with reverse curve blades
- Fan starting motor
- Air damper for air setting controlled by a servomotor
- Minimum air pressure switch
- Combustion head, that can be set on the basis of required output
- Gears pump for high pressure fuel supply
- Pump starting motor
- Oil safety valves
- Two oil valves (1st and 2nd stage)
- Flame control panel
- Electronic device to check all burners operational modes (Led Panel)
- UV photocell for flame detection
- Burner on/off switch
- Oil/Gas selector
- Manual 1st and 2nd stage switch
- Plugs for electrical connections (RLS 28-38-50)
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 44 electric protection level.

Conforming to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- 92/42/EEC directive (performance)
- 98/37/EEC directive (machinery)
- EN 267 (liquid fuel burners)
- EN 676 (gas fuel burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 4 screws for fixing the flange
- 1 thermal screen
- 4 screws for fixing the burner flange to the boiler
- 2 flexible pipes for connection to the oil supply network
- 2 nipples for connection to the pump with gaskets
- Kit for transformation to LPG
- Fairleads for electrical connections (for RLS 28-38-50 model)
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Nozzles

- Head extension kit
- Degasing unit
- Adapters
- Stabiliser spring
- Seal control kit.

Lineagrafica

RIELLO s.p.a. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.


MODULATING DUAL FUEL BURNERS

CE

RIELLO

BURNERS

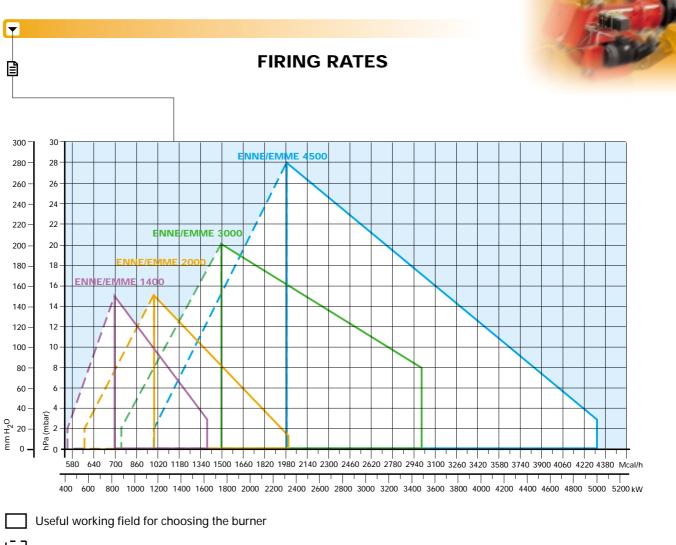
E/EMME SERIES	► ENNE/EMME 1400	407/814÷1628 kW
	► ENNE/EMME 2000	581/1163÷2325 kW
	► ENNE/EMME 3000	872/1744÷3488 kW
	► ENNE/EMME 4500	1163/2325 ÷ 5000 kW

The ENNE/EMME 1400-4500 series of burners covers a firing range from 407 to 5000 kW. They have been designed for high output users and they are suitable for matching with every kind of boilers, with normal or pressurized combustion chamber. Operation can be "two stage progressive" or, alternatively, "modulating" with the installation of a PID logic regulator and respective probes. Two fuel options are available: only gas and only heavy oil, thus settable by a manual switch. Heavy oil circuit is fitted with his own electric motor: this permits pump stop during gas operation preventing danger of pumping seizure and avoiding oil circulation. A wide range of accessories and gas trains suitable to the burners guarantee an elevated working flexibility.

Ξ

Ē

TECHNICAL DATA


	Model			▼ENNE/EMME 1400	▼ENNE/EMME 2000	▼ENNE/EMME 3000	▼ENNE/EMME 45	
	Burner operatio	n mode		Modulating (with regulator and probes accessories)				
	Modulating ratio			3:1				
	gran	type		SQM 10.16502				
	Servomotor	run time	s		42			
			kW	407/814-1628	581/1163-2325	872/1744-3488	1163/2325-5000	
	Heat output		Mcal/h	350/700-1400	500/1000-2000	750/1500-3000	1000/2000-4300	
	Working temper	rature	°C min/max		0/4		1000/2000 1000	
	inoning tompo	net calorific value	kWh/kg		11,1			
	Oil	viscosity	mm ² /s (cSt)	max. 50 (at 50°C)				
		delivery	kg/h	36/73-114	52/104-208	78/156-312	104/208-448	
ŀ		type		TA 3	TA 4	NVBHR PDC	NVBHR MDC	
	Pump	delivery	kg/h	750 (at 25 bar)	850 (at 25 bar)	900 (at 25 bar)	1200 (at 25 bar)	
	Atomised press	-	bar	/ 00 (ut 10 bul)	25		.100 (at 10 bai)	
	Fuel temperatur		max °C		50			
	Fuel pre-heater	•	india o		YE			
	a a pro nouter	net calorific value	kWh/Nm ³		10			
	G20	density	kg/Nm ³		0,7			
1		gas delivery	Nm ³ /h	41/81-127	58/116-232	87/174-349	116/232-500	
ŀ		net calorific value	kWh/Nm ³		8,6		110/202 000	
	G25	density	kg/Nm ³		0,7			
	520	gas delivery	Nm ³ /h	47/95-147	68/135-270	101/203-406	135/270-581	
	net calorific value		kWh/Nm ³	47770 147	25,		100/2/0 001	
	LPG	density	kg/Nm ³	2,02				
	LFG	gas delivery	Nm ³ /h	16/32-49	23/45-90	- 34/68-135	45/90-194	
	Fan		type		Centrifugal with for		10/70 171	
ľ	Air temperature max °C		60					
	Electrical supply		Ph / Hz / V	3N/50/230-400 (±10%) 人 3/50/230 (±10%) △				
	Auxiliary electric		Ph / Hz / V	1/50/230 (±10%)				
	Control box	our ouppry	type	LFL 1.333				
	Total electrical p	ower	kW	19	20	32	35	
	Auxiliary electric		kW	0,9	0,9	1,2	1,2	
	Heaters electrica	-	kW	14	14	19,6	19,6	
	Protection level	•	IP		40			
	Pump motor ele		kW	1,1	1,1	2,2	2,2	
	Rated pump mo		A	3 - 5,2	3 - 5,2	3,7 - 6,4	3,7 - 6,4	
	Pump motor sta		A	,-	,	-,,.		
	Pump motor pro	-	IP		44	L		
	Fan motor elect		kW	3	4	9	12	
1	Rated fan motor	•	A	6,1 - 10,6	8 - 13,8	17 - 29,4	26 - 45	
-	Fan motor start		A	44,5 - 77	64 - 111	124,1 - 215	151 - 261	
ŀ	Fan motor prote		IP	44	44	44	55	
			 type		-			
	Ignition transfor	mer	V1- V2		230 V - 2	x 6 kV		
	3		1 - 2		1,9 A - 3			
	Operation				Intermittent (at least			
ľ	Sound pressure		dB(A)					
	Sound power		W		· · ·		1	
ľ	•	CO emission	mg/kWh		< 17	70		
		Grade of smoke indicator	-					
	Oil	CxHy emission	mg/kWh					
		NOx emission	mg/kWh		< 10			
$\left \right $		CO emission	mg/kWh		< 10			
	G20	NOx emission	mg/kWh		< 15			
	Directive		J		90/396 - 89/33			
	Conforming to			EN 267 - EN 676				
1	Certification							

Y

Ê

Reference conditions: Temperature: 20°C - Pressure: 1013,5 mbar - Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Modulation range

Test conditions conforming to EN 267 - EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

FUEL SUPPLY

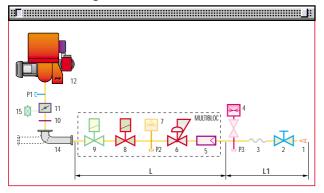
GAS TRAIN

The burners are fitted with a butterfly valve to regulate the fuel, controlled by a variable profile cam servomotor.

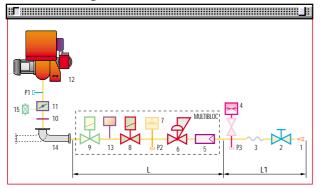
Fuel can be supplied either from the right or left hand sides. A maximum gas pressure switch stops the burner in case of excess pressure in the fuel line.

The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.

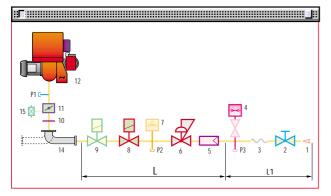
The gas train can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).



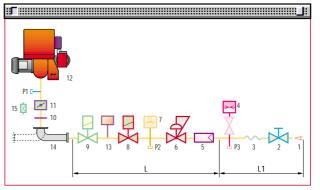
Y

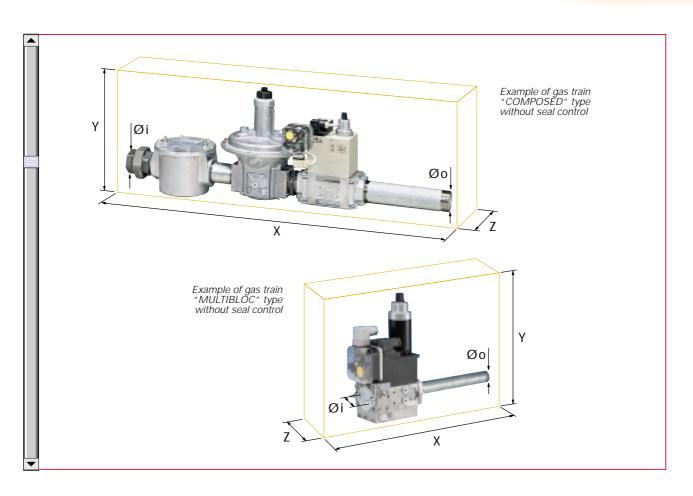

B

Example of burner of ENNE/EMME series with connected gas train


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control




COMPOSED gas train without seal control

1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
10	Gasket and flange supplied with the burner
11	Gas adjustment butterfly valve
12	Burner
13	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
14	Gas train-burner adapter.
15	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

Gas trains are approved by standard EN 676 together with the burner.

▼

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to ENNE/EMME burners, inlet and outlet diameters and seal control if fitted.

Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

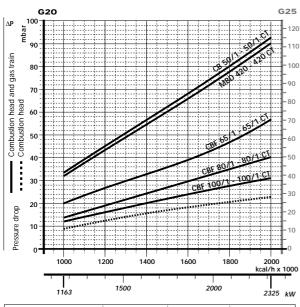
The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and the one of the gas train "Composed" type is 500 mbar.

	Name	Code	Øi	Øo	X mm	Y mm	Z mm	SC
MULTIBLOC GAS TRAINS	MBD 420	3970181	2″	2"	523	300	100	-
	MBD 420 CT	3970182	2"	2"	523	300	227	Incorporated
COMPOSED GAS TRAINS	CB 50/1	3970146	2″	2"	986	328	250	-
	CB 50/1 CT	3970160	2″	2"	986	328	250	Incorporated
	CBF 65/1	3970147	DN 65	DN 65	874	356	285	-
	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	Incorporated
	CBF 80/1	3970148	DN 80	DN 80	934	416	285	-
	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	Incorporated
	CBF 100/1	3970149	DN 100	DN 100	1054	501	350	-
	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	Incorporated

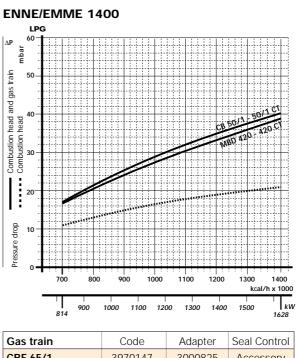
When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner.

For further information see "Accessories" section.

PRESSURE DROP DIAGRAM

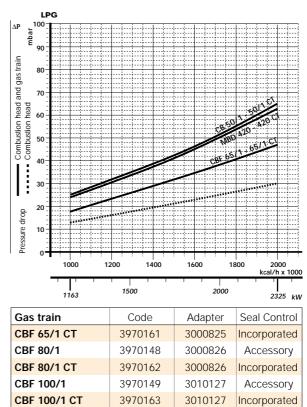

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

The value thus calculated represents the minimum required input pressure to the gas train.


NATURAL GAS ENNE/EMME 1400 G20 G25 ΔP mbar Combustion head and gas train Combustion head Pressure drop al/h x 1000 1628 kW

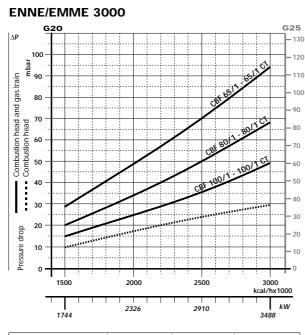
Gas train	Code	Adapter	Seal Control
MBD 420	3970181	-	Accessory
MBD 420 CT	3970182	-	Incorporated
CB 50/1	3970146	-	Accessory
CB 50/1 CT	3970160	-	Incorporated

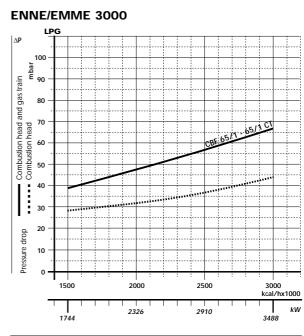
ENNE/EMME 2000

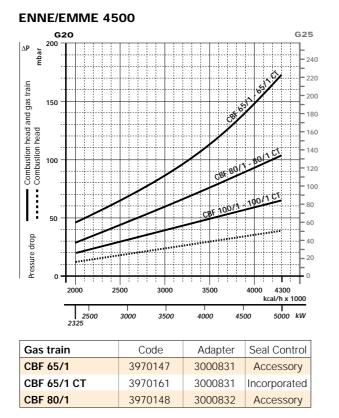

Gas train	Code	Adapter	Seal Control
MBD 420	3970181	-	Accessory
MBD 420 CT	3970182	-	Incorporated
CB 50/1	3970146	-	Accessory
CB 50/1 CT	3970160	-	Incorporated
CBF 65/1	3970147	3000825	Accessory

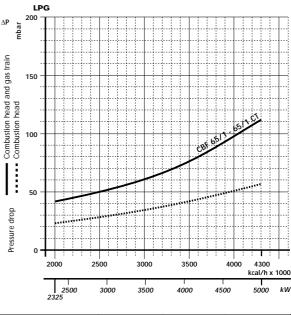
LPG

Gas train	Code	Adapter	Seal Control
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3970162	3000826	Incorporated


ENNE/EMME 2000




NATURAL GAS


Gas train	Code	Adapter	Seal Control
CBF 65/1	3970147	3000831	Accessory
CBF 65/1 CT	3970161	3000831	Incorporated
CBF 80/1	3970148	3000832	Accessory

Gas train	Code	Adapter	Seal Control
CBF 80/1 CT	3970162	3000832	Incorporated
CBF 100/1	3970149	3010127	Accessory
CBF 100/1 CT	3970163	3010127	Incorporated

ENNE/EMME 4500

Gas train	Code	Adapter	Seal Control
CBF 80/1 CT	3970162	3000832	Incorporated
CBF 100/1	3970149	3010127	Accessory
CBF 100/1 CT	3970163	3010127	Incorporated

note

Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

LPG

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\mathbf{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

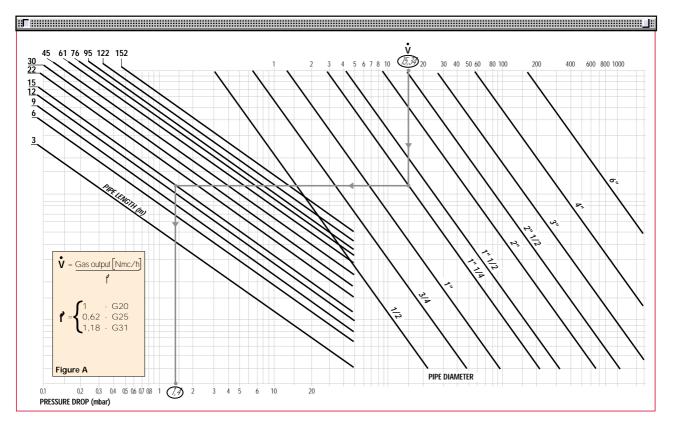
Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	 gas used 	G25
-	- gas output	9.51 mc/h

- pressure at the gas meter 20 mbar - gas line length 15 m - conversion coefficient 0.62 (see figure A)

- equivalent methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix} = 15.34$ mc/h


- once the value of 15.34 has been identified on the output scale (\dot{v}), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;

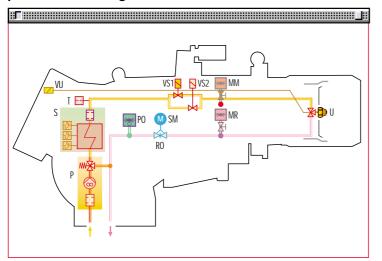
- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;

- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

▼

HYDRAULIC CIRCUIT


The burners are fitted with two valves and an oil preheater with thermostats along the oil line from the pump to the nozzle, which opening is regulated from a needle valve. A pressure regulator on the return circuit from the nozzle allows to vary the quantity of fuel burnt.

For heavy oil preheating, a special kit with three electrical heaters at the pump, at the regulator and at the nozzle could be used.

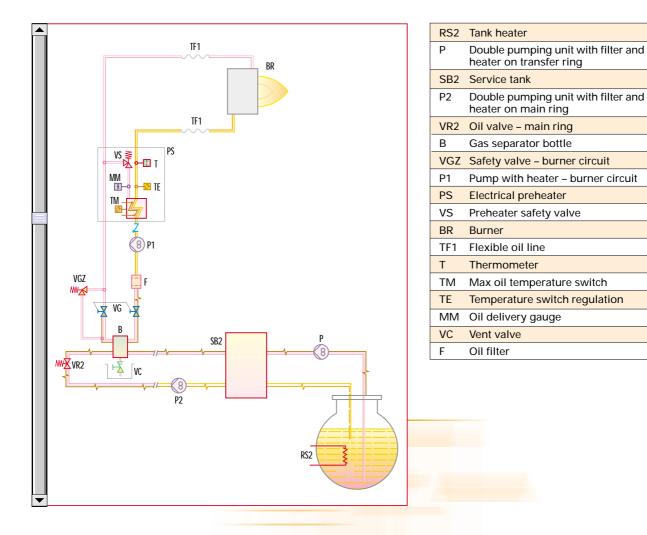
The models are fitted with a maximum pressure switch on the oil return circuit.

Example of oil circuit in ENNE/EMME series of burners

Р	Pump with filter, heater and pressure regulator on the output circuit
S	Oil preheater with maximum, minimum and regulation thermostat
Т	Thermometer
MM	Oil delivery gauge
SM	Servomotor
RO	Pressure regulator on the return circuit
PO	Oil pressure switch on the return circuit
U	Nozzle
MR	Pressure gauge on the return circuit
VU	Nozzle needle valve
VSn	Delivery oil valves

prEN 267 > 100 Kg/h

▼



SELECTING THE FUEL SUPPLY LINES

The fuel feed must be completed with the safety devices required by the local norms.

IMPORTANT NOTES

- The oil could easily flow through the pipes if those are properly sized, protected and heated (by electricity, steam or hot water)
- In order to limit gas or steam production the oil pressure into the gas separator shall be set in function of the supply temperature, see instructions manual.
- The forwarding pump should have at least a double capacity than that one of the burner. For several burners supplied through the same ring supply line, the forwarding pump should have a capacity of approximatively 30% more than the sum of the single burners outputs.

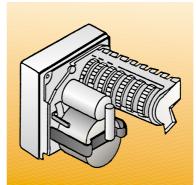
-

VENTILATION

The ventilation circuit comes with a forward blades centrifugal fan, which guarantees high pressure levels at the required air deliveries and permits installation flexibility.

T

B


Y

B

In spite of the remarkable output power and of the very high pressure performance, ENNE/EMME models are extremely compact.

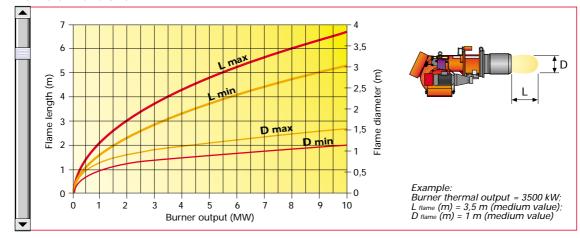
Sound proofing boxes help to reduce the noise level.

A variable profile cam connects fuel and air setting, ensuring fuel efficiency at all firing rates.

Example of servomotor mounted on ENNE/EMME series of burner

COMBUSTION HEAD

Two different combustion head length can be selected for the various models of ENNE/EMME series of burners.

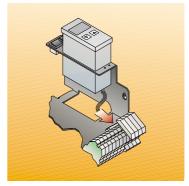

The choice depends on the thickness of the front panel and type of boiler. Correct head penetration into the combustion chamber depends on the type of heat generator.

These burners are equipped with a variable geometry combustion head. This enables optimum combustion performance throughout the working field, ensuring peak combustion efficiency thus saving on fuel consumption.

Example of ENNE/EMME combustion head

The following diagram shows the flame dimensions in relation to the burner output. The lengths and diameter shown in the diagram below should be employed for a preliminary check: if the combustion chamber dimensions are different from the values in the diagram, further tests need to be done.

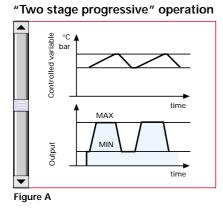
Flame dimensions

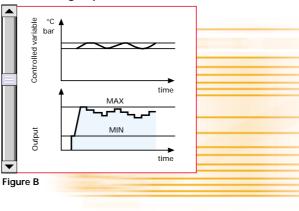

ADJUSTMENT

BURNER OPERATION MODE

The ENNE/EMME series of burners can be "two stage progressive" or "modulating".

During "two stage progressive" operation, the burner gradually adapts the output to the required level, by varying between two preset levels (see figure A).

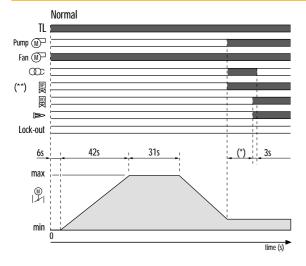

During "modulating" operation, normally required in steam generators, in superheated water boilers or thermal oil boilers, a specific regulator and probes are required. These are supplied as accessories that must be ordered separately. The burner can work for long periods at intermediate output levels (see figure B).


Y

B

Example of a regulator

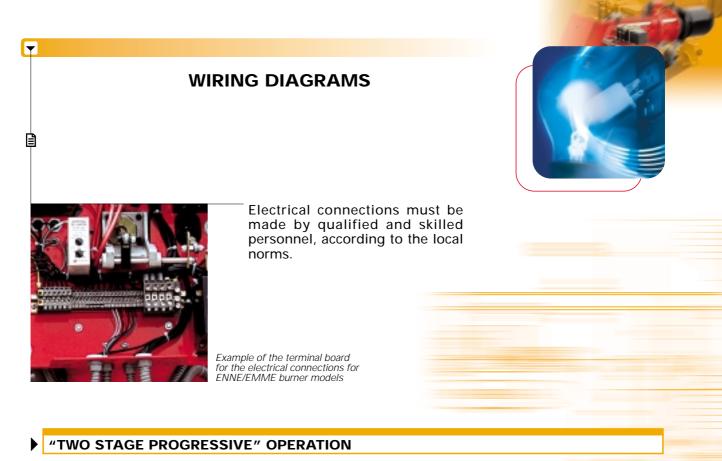
"Modulating" operation

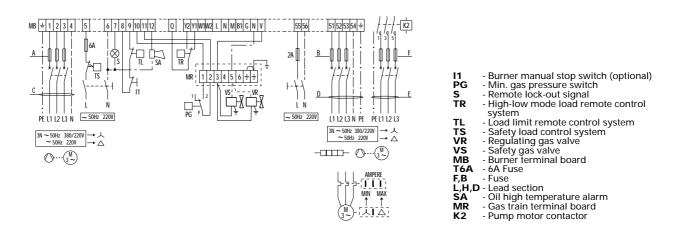

0″

79"

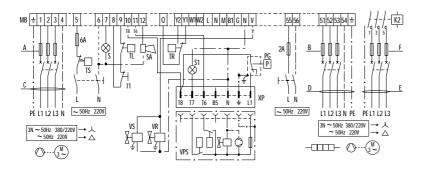
the

n″

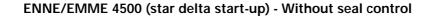

START UP CYCLE

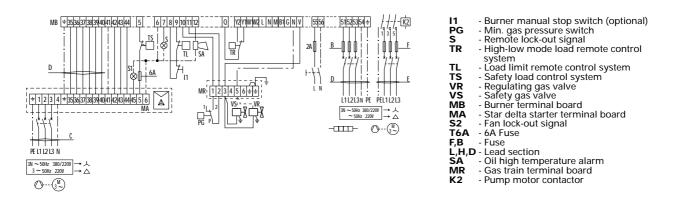

The burner begins start-up cycle: fan motor starts turning.

- 6" 48" The servomotor opens the air damper at the maximum position.
- 48" 79" Chamber pre-purge phase with air damper open.
 - The servomotor takes the air damper to firing position.
 - Ignition transformer turns on. Pre-purge valve opens and oil circuit pre-purge phase takes place.
- n" + m" (*) Ignition valve opens and flame rilevation with photocell is activated.
- n" + m" + 3" After a safety time of m" + 3" the ignition transformer turns off if there is the flame otherwise lock-out happens.

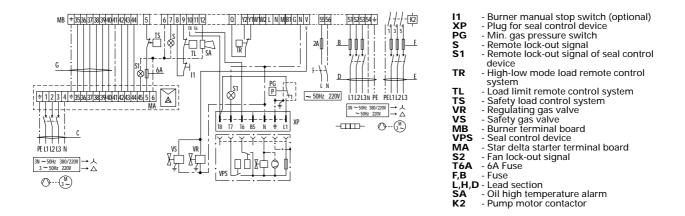

(*) Time adjustable with timer (6" for gas working) (**) Only for heavy oil working.

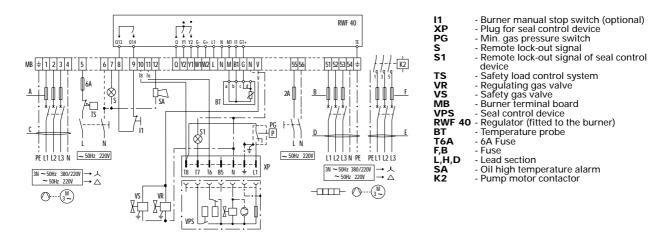
ENNE/EMME 1400 - 2000 - 3000 (direct start-up) - Without seal control


ENNE/EMME 1400 - 2000 - 3000 (direct start-up) - With seal control



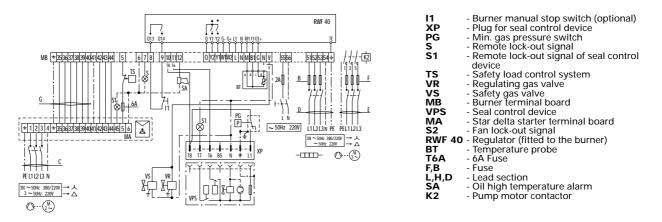
_			
 Burner manua 	I stop	switch	(optional)


- 11 XP PG - Plug for seal control device
 - Min. gas pressure switch
 Remote lock-out signal
- 5 S1
- Remote lock-out signal of seal control device TR
 - High-low mode load remote control system
- Load limit remote control system TL
- Load limit remote control s
 Safety load control system
 Regulating gas valve
 Safety gas valve
 Burner terminal board
 Seal control device
 6A Fuse
 Euroe ŤS VR
- VS MB VPS T6A
 - Fuse
- F,B
- F, B 1 Use
 L, H, D Lead section
 SA Oil high temperature alarm
 K2 Pump motor contactor

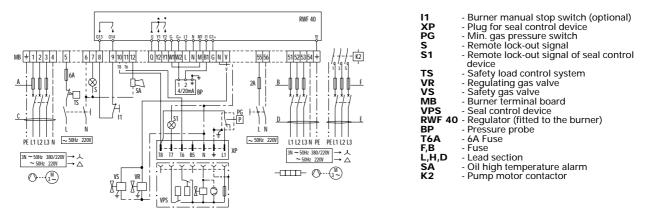


ENNE/EMME 4500 (star delta start-up) - With seal control

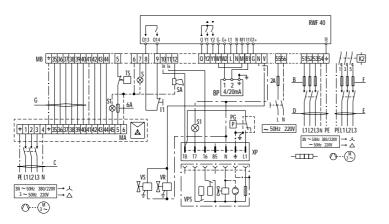
"MODULATING" OPERATION - temperature probe


ENNE/EMME 1400 - 2000 - 3000 (direct start-up)

▼



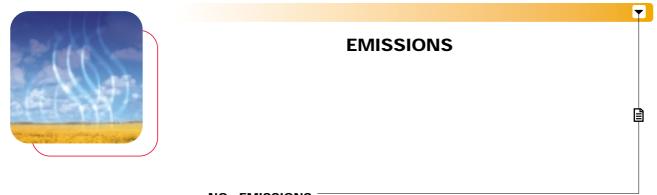
ENNE/EMME 4500 (star delta start-up)

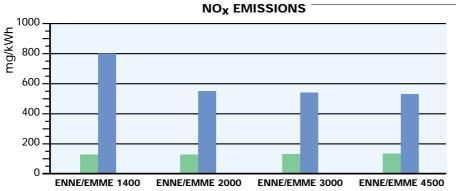


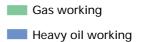
"MODULATING" OPERATION - pressure probe

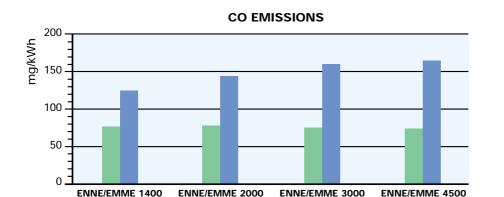
ENNE/EMME 1400 - 2000 - 3000 (direct start-up)

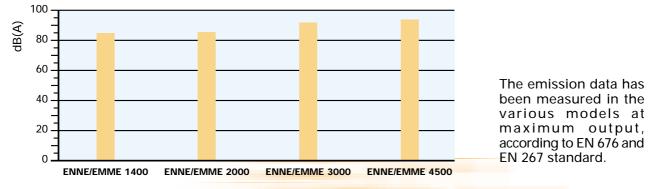
ENNE/EMME 4500 (star delta start-up)

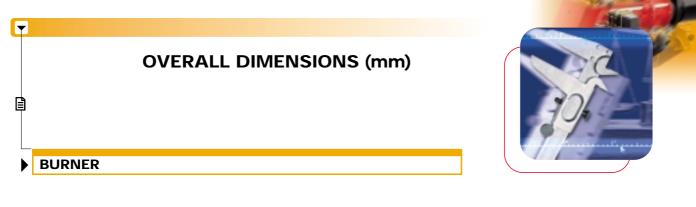


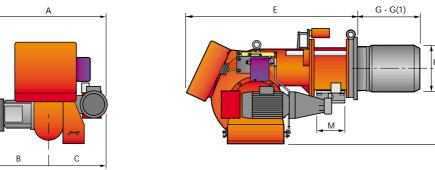

l1 XP PG S S1	 Burner manual stop switch (optional) Plug for seal control device Min. gas pressure switch Remote lock-out signal Remote lock-out signal of seal control device
TS	 Safety load control system
VR	- Regulating gas valve
vs	- Safety gaš valve
MB	- Burner terminal board
VPS	 Seal control device
MA	 Star delta starter terminal board
S2	 Fan lock-out signal
RWF 40	 Regulator (fitted to the burner)
BP	- Pressure probe
T6A	- 6A Fuse
	- Fuse
	- Lead section
SA	 Oil high temperature alarm
К2	- Pump motor contactor

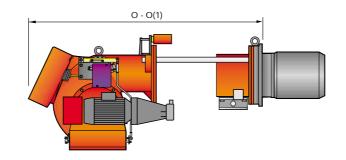

			Direct start-up							
м	odel	▼ENNE/E	MME 1400	1ME 1400 ▼ ENNE/EMME 2000		▼ENNE/EMME 3000		▼ENNE/EMME 450		
		230 V	400 V	230 V	400 V	230 V	400 V	230 V	400 V	
А	А	25	25	35	25	63	50	-	-	
В	А	50	35	50	35	63	50	63	50	
F	А	6	4	6	4	16	10	20	16	
С	mm ²	2,5	2,5	4	2,5	6	4	10	6	
D	mm ²	10	6	10	6	10	6	10	6	
Е	mm ²	2,5	1,5	2,5	1,5	4	2,5	4	2,5	
G	mm ²	-	-	-	-	-	-	6	4	


The following table shows the supply lead sections and the type of fuse to be used.

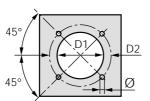




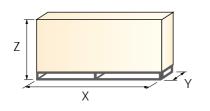




NOISE EMISSIONS



Model	А	В	С	E	G - G(1)	Н	I	М	O - O(1)
► ENNE/EMME 1400	892	376	516	1090	385 - 495	250	467	2″	1475 - 1585
► ENNE/EMME 2000	912	396	516	1090	385 - 495	260	467	DN80	1475 - 1585
ENNE/EMME 3000	1000	447	553	1320	476 - 606	336	525	DN80	1796 - 1926
► ENNE/EMME 4500	1061	508	553	1320	476 - 606	336	525	DN80	1796 - 1926


(1) model "extended head"

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
► ENNE/EMME 1400	255	260	M16
ENNE/EMME 2000	265	260	M16
► ENNE/EMME 3000	340	310	M20
► ENNE/EMME 4500	340	310	M20

PACKAGING

Model	Х	-	X(1)	Y	Z	Kg
▶ ENNE/EMME 1400	1670	-	1670	1010	780	265
ENNE/EMME 2000	1670	-	1670	1010	780	265
ENNE/EMME 3000	2000	-	2000	1160	870	280
▶ ENNE/EMME 4500	2000	-	2000	1160	870	290

INSTALLATION DESCRIPTION

T

₿

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- ▶ Fit the gas train choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook
- Refit the burner casing to the slide bars.
- Install the nozzle choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook.
- Check the position of the electrodes.
- Close the burner, sliding it up to the flange, keeping it slightly raised to avoid the flame stability disk rubbing against the blast tube.

ELECTRICAL AND HYDRAULIC CONNECTIONS AND START UP

- The burners are supplied for connection to two pipes fuel supply system.
- Connect the ends of the flexible pipes to the suction and return pipework using the supplied nipples.
- Make the electrical connections to the burner following the wiring diagrams included in the instruction handbook.
- Prime the pump by turning the motor (after checking rotation direction if it is a three phase motor).
- Adjust the gas train for start-up On start-up, check: Pressure pump and valve unit regulator (to max. and min.) Gas pressure at the combustion head (to max. and min. output) Combustion quality, in terms of unburned substances and excess air.

BURNER ACCESSORIES

Nozzles

T

þ

The nozzles must be ordered separately. The following table shows the features and codes on the basis of the maximum required fuel output.

Nozzles ty	pe B3 - AA 45°	
Burner	Rated output (kg/h)	Nozzle code
ENNE/EMME 1400	70	3009613
ENNE/EMME 1400	80	3009615
ENNE/EMME 1400	90	3009617
ENNE/EMME 1400 - 2000	100	3009620
ENNE/EMME 1400 - 2000	125	3009623
ENNE/EMME 1400 - 2000 - 3000	150	3009626
ENNE/EMME 2000 - 3000	175	3009629
ENNE/EMME 2000 - 3000 - 4500	200	3009632
ENNE/EMME 3000 - 4500	225	3009635
ENNE/EMME 3000 - 4500	250	3009638
ENNE/EMME 3000 - 4500	275	3009641
ENNE/EMME 3000 - 4500	300	3009644
ENNE/EMME 4500	325	3009647
ENNE/EMME 4500	350	3009650
ENNE/EMME 4500	375	3009653
ENNE/EMME 4500	400	3009656
ENNE/EMME 4500	425	3009659
ENNE/EMME 4500	450	3009661

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following list:

	Spacer kit	
Burner	Spacer thickness S (mm)	Kit code
ENNE/EMME 1400 - 2000	110	3000722
ENNE/EMME 3000 - 4500	130	3000751

Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

Sound proofing box					
Burner	Box type	Box code			
ENNE/EMME 1400 - 2000	C7	3010048			
ENNE/EMME 3000 - 4500	C8	3010049			

Accessories for modulating operation

To obtain modulating setting, the ENNE/EMME series of burners requires a regulator with three point outlet controls. The relative temperature or pressure probes fitted to the regulator must be chosen on the basis of the application.

The following table lists the accessories for modulating setting with their application range.

Burner	Regulator type	Code
ENNE/EMME 1400 - 2000 - 3000 - 4500	RWF 40	3010211

▼

Probe type	Range (°C) (bar)	Probe code
Temperature PT 100	-100 ÷ 500°C	3010110
Pressure 4 ÷ 20 mA	0 ÷ 2,5 bar	3010213
Pressure 4 ÷ 20 mA	0 ÷ 16 bar	3010214

Depending on the servomotor fitted to the burner, a three-pole potentiometer (1000 Ω) can be installed to check the position of the servomotor. The KITS available for the various burners are listed below.

Burner	Potentiometer kit code
ENNE/EMME 1400 - 2000 - 3000 - 4500	3010021

LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:

LPG kit				
Burner	Kit code for standard head	Kit code for extended head		
ENNE/EMME 1400 - 2000	3010063	3010063		

GAS TRAIN ACCESSORIES

Adapters

Y

Ē

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

Adapters						
Burner	Gas train	Dimensions	Adapter code			
ENNE/EMME 1400	CBF 65	DN 65 2"1/2 2"2"	3000825			
	CBF 80	DN 80 2"1/2 2"	3000826			
	MBD 420 CB 50/1	DN 80 DN 65 2"1/2 2"	3010128			
ENNE/EMME 2000	CBF 65	DN 65	3000831			
	CBF 80	DN 80	3000832			
	CBF 100	DN 100	3010127			
	CBF 65	DN 65	3000831			
ENNE/EMME 3000	CBF 80	DN 80	3000832			
	CBF 100	DN 100	3010127			
	CBF 65	DN 65	3000831			
ENNE/EMME 4500	CBF 80	DN 80	3000832			
	CBF 100	DN 100	3010127			

Stabiliser spring

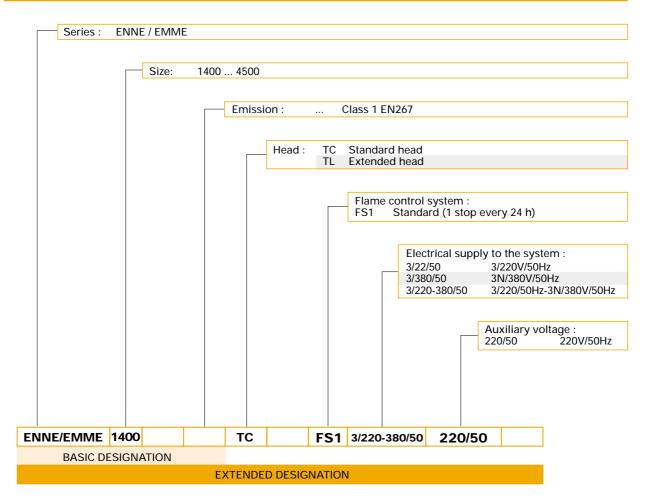
Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range.

-	
-	
-	
CX	
c > c	
6	

Stabiliser spring				
Gas train	Spring	Spring code		
CBF 65/1 - CBF 80/1	Red from 25 to 55 mbar	3010133		
CBF 100/1	Red from 25 to 55 mbar	3010134		
CBF 65/1 - CBF 80/1	Black from 60 to 110 mbar	3010135		
CBF 100/1	Black from 60 to 110 mbar	3010136		
CBF 65/1 - CBF 80/1	Pink from 90 to 150 mbar	3090456		
CBF 100/1	Pink from 90 to 150 mbar	3090489		

Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The seal control is type VPS 504.


	Seal control kit	
Burner	Gas train	Kit code
ENNE/EMME 1400	MBD 420 - CB 50/1 -	3010125
EININE/EIVIIVIE 1400	CBF 65/1 - CBF 80/1	3010123
ENNE/EMME 2000	MBD 420 - CB 50/1 -	3010125
	CBF 65/1 - CBF 80/1- CBF 100/1	3010123
ENNE/EMME 3000	CBF 65/1 - CBF 80/1- CBF 100/1	3010125
ENNE/EMME 4500	CBF 65/1 - CBF 80/1	3010125

SPECIFICATION

A specific index guides your choice of burner from the various models available in the ENNE/EMME series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

▼

Y

B

AVAILABLE BURNER MODELS

ENNE/EMME 1400 ENNE/EMME 1400TC TLFS1 FS13/220-380/50 3/220-380/50ENNE/EMME 2000 ENNE/EMME 2000TC TLFS1 FS13/220-380/50 3/220-380/50	220/50 220/50	ENNE/EMME 4500TCFS13/220/50220/50ENNE/EMME 4500TLFS13/220/50220/50ENNE/EMME 4500TCFS13/380/50220/50ENNE/EMME 4500TLFS13/380/50220/50
ENNE/EMME 3000 TC FS1 3/220-380/50 ENNE/EMME 3000 TL FS1 3/220-380/50	220/50 220/50	Other versions are available on request.

PRODUCT SPECIFICATION

Burner

Monoblock forced draught dual fuel burner, two stage progressive or modulating operation with a kit, made up of: - Air suction circuit

- Fan with forward curved blades
- Air damper for setting and butterfly valve for regulating fuel output controlled by a servomotor
- Combustion head, that can be set on the basis of required output
- Maximum gas pressure switch
- Minimum air pressure switch
- Fan electrical motor
- Pump electrical motor
- Gears pump for high pressure fuel supply, fitted with:
 - -filter
 - -pressure regulator -connections for installing a pressure gauge and a a vacuometer
 - -internal by-pass for singe pipe installation
- Preheater unit
- Valve unit with a double oil safety valve on the output circuit and safety valve on the return circuit
- UV photocell for flame detection
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 40 protection level.

Gas train

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 100), fitted with:

- Filter
- Stabiliser - Minimum gas pressure switch
- Safety valve
- Valve seal control (for output > 1200 kW)
- One stage working valve with ignition gas output regulator.

Conforming to:

- 90/396/EEC directive (gas)
- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- EN 267 (liquid fuel burners)
- EN 676 (gas fuel burners).

Standard equipment:

- 1 gas train gasket
 12 screws for fixing the burner flange to the boiler
- 1 insulating screen
- 2 flexible hoses for connection to the oil supply circuit
- 2 nipples for connection to the pump
- 4 wiring looms fittings for electrical connections
- 2 pin extensions
- 8 washers
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Return nozzles
- Head length reduction kit
- Sound proofing box
- RWF 40 output regulator Pressure probe 0-2,5 bar
- Pressure probe 0-16 bar
- Temperature probe -100-500°C
- Potentiometer kit for the servomotor
- Kit for transformation to LPG
- Gas train adapter
- Stabiliser spring
- Seal control kit.

Lineagrafica

RIELLO s.p.a. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

TWO STAGE DUAL FUEL BURNERS

CE

ES	▶ GI/EMME 300 107/175÷ 332 kW
	▶ GI/EMIME 400 116/232÷ 465 kW
	▶ GI/EMME 600 174/348÷ 665 kW
	▶ GI/EMME 900 250/525÷ 922 kW

The GI/EMME 300-900 series of burners covers a firing range from 107 to 922 kW. They have been designed for middle and high output users and they are suitable for matching with boilers that have pressurized combustion chambers.

Their use allows to have an high safety during operation thank to continuos working, guaranteed from the double fuel supply: this is necessary when gas distribution line isn't able to give continuosly the maximum required output.

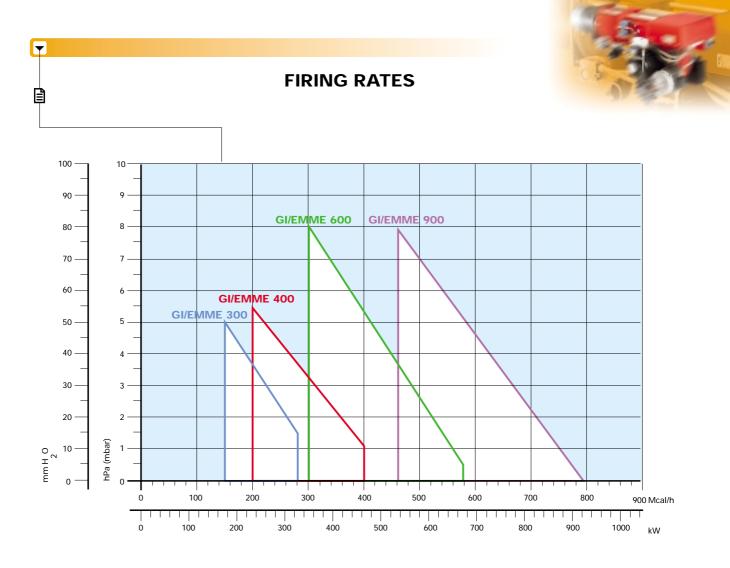
Two operating options, gas or light oil, are available thank to a selector and a terminal board. The light oil circuit comes with its own electric motor: so the pump is stopped during gas operation to prevent pump seizure and to avoid oil in circulation.

A wide range of accessories and gas trains guarantee maximum working flexibility.

E

TECHNICAL DATA

Model			▼ GI/EMME 300	▼ GI/EMME 400	▼ GI/EMME 600	▼ GI/EMME 900
Burner one	ration mode			Тию	stage	
-	g ratio at max. ouput		2:1			
	type		LKS 210			
Servomoto	run time	s	5			
Heat outpu	1	kW	107/175 - 332	116/232 - 465	174/348 - 665	250/525 - 922
neur ourpe		Mcal/h	92/150 - 286	100/200 - 400	150/299 - 572	215/452 - 793
Working te	mperature	°C min/max	12,100 200		40	
	Net calorific value kWh/kg			11		
Oil	Viscosity	mm ² /s (cSt)		4-6 at		
	Delivery	kg/h	9/15 - 28	10/20 - 39	15/29 - 56	21/44 - 78
	type	<u>J</u>	AN 67	AN 67	AN 77	AN 97
Pump	delivery	kg/h	75 at 12 bar	75 at 12 bar	100 at 12 bar	120 at 12 bar
Atomised	-	bar		1	2	
Fuel tempe		max °C			0	
Fuel prehe				N	0	
	Net calorific value	kWh/Nm ³		1		
G20	Density	kg/Nm ³		0,		
	Gas delivery	Nm ³ /h	10,7/17,5 - 33,2	11,6/23,2 - 46,5	17,4/34,8 - 66,5	25/52,5 - 92,2
	Net calorific value	kWh/Nm ³	.,	8		
G25	Density	kg/Nm ³		0,		
	Gas delivery	Nm ³ /h	12,4/20,3 - 38,6	13,5/27 - 54	20,2/40,4 - 77,3	29/61 - 107,2
Net calorific value		kWh/Nm ³	,	25	1	
LPG	Density	kg/Nm ³		2,0		
	Gas delivery	Nm ³ /h	4,1/6,8 - 12,9	4,5/9 - 18	6,7/13,5 - 25,8	9,7/20,3 - 35,7
Fan	,	type		Centrifugal with fo	rward curve blades	
Air temper	ature	max °C	60			
Electrical s		Ph/Hz/V	1/50/230 (± 10%) 3N/50/230-400 (±10%)			
	lectrical supply	Ph/Hz/V	1/50/230 (±10%)			
Control bo		type	LFL 1.333			
Total elect	ical power	kW	0,5	0,62	1,1	2
Auxiliary e	lectrical power	kW	0,1	0,1	0,2	0,35
Heaters ele	ectrical power	kW		-	-	
Protection	level			4	4 P	
Pump mot	or electrical power	kW		0,	15	
Rated pum	p motor current	А		1,4		2,85
	or start up current	А		3,2		6,5
Pump mot	or protection level	IP	44			
Fan motor	electrical power	kW	0,25	0,37	0,75	1,5
	notor current	А	1,85	2,9	2,85/1,65	6,55/3,15
	start up current	A	4,2	6,6	6,5/3,8	32,75/15,75
	protection level	IP		4		
		type		-	-	
Ignition tra	nsformer	V1- V2		230 V -	1x8 kV	
-		1 - 2		1,8 A -	30 mA	
Operation				Intermittent (at least	t one stop every 24h)	
Sound pres	sure	dB(A)	69	74	82	84
Sound pov	/er	w				
	CO emission	mg/kWh		< :	30	
01	Grade of smoke indicator	N° Bacharach		-		
Oil	CxHy emission	mg/kWh		-	-	
	NOx emission	mg/kWh		< 2	200	
	CO emission	mg/kWh		< 1	60	
G20	NOx emission	mg/kWh		< 1	20	
Directive				89/336 - 7	/3/23 EEC	
Conformin	g to		EN 267 - EN 676			
Certificatio	-			-		


Reference conditions:

Y

₿

Temperature: 20°C - Pressure: 1013,5 mbar - Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Test conditions conforming to EN 267 - EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

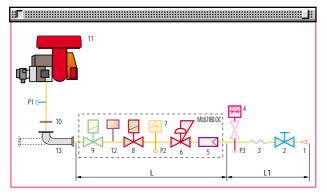
FUEL SUPPLY

GAS TRAIN

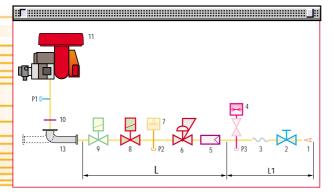
The gas trains are fitted with a regulating valve to adjusts fuel delivery in relation to heat required. This valve is controlled by the two-stages device fitted on the burner.

Fuel can be supplied either from the right or left sides, on the basis of the application requirments.

The gas train can be selected to best fit system requirments depending on the fuel output and pressure in the supply line. The gas trains can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).

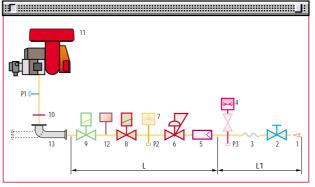


Example of gas inlet pipe burners for GI/EMME

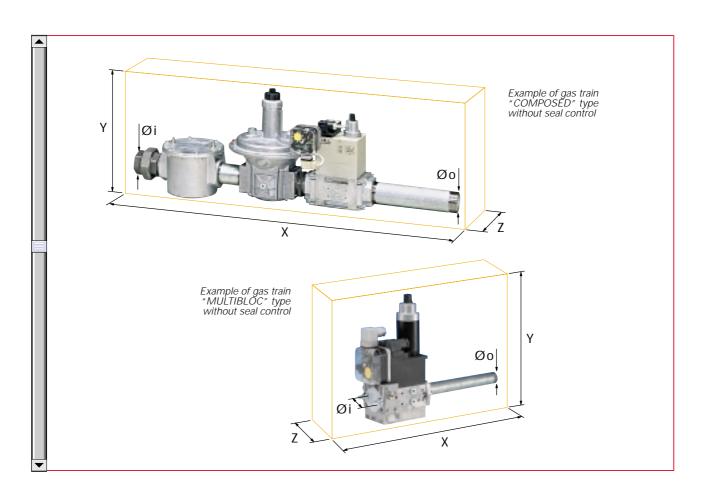


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control



COMPOSED gas train without seal control


1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical). Three adjustments: - ignition delivery (rapid opening) - 1 st stage delivery (slow opening) - 2 nd stage delivery ((slow opening)
10	Gasket and flange supplied with the burner
10 11	Gasket and flange supplied with the burner Burner Burner
11	0 11
11	Burner Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
11 12	Burner Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
11 12 13	Burner Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW Gas train-burner adapter.
11 12 13 P1	Burner Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW Gas train-burner adapter. Combustion head pressure
11 12 13 P1 P2	Burner Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW Gas train-burner adapter. Combustion head pressure Pressure downstream from the regulator
11 12 13 P1 P2 P3	Burner Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW Gas train-burner adapter. Combustion head pressure Pressure downstream from the regulator Pressure upstream from the filter

COMPOSED gas train with seal control

Y

B

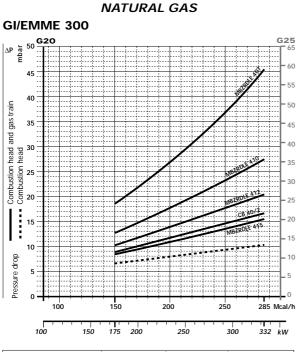
Gas trains are approved by standard EN 676 together with the burner.

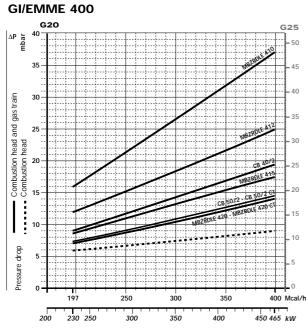
-

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to RLS burners, intake and outlet diameters and seal control if fitted.

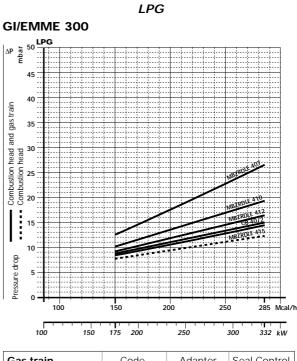
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and that one of gas train "Composed" type is 500 mbar.

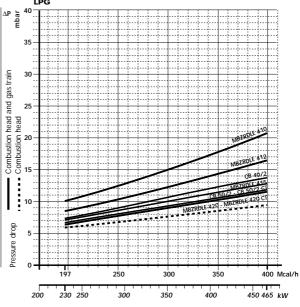

	Name	Code	Øi	Øо	X mm	Y mm	Z mm	Seal Control
	MBZRDLE 407	3970150	3/4″	3/4"	195	235	120	-
Ns	MBZRDLE 410	3970151	1″	3/4″	195	235	145	-
RAI	MBZRDLE 412	3970152	1″ 1/4	1″ 1/2	433	290	145	-
MULTIBLOC GAS TRAINS	MBZRDLE 415	3970183	1″ 1/2	121/2	523	346	100	-
ML 0,0	MBZRDLE 420	3970184	2″	2″	523	400	100	-
	MBZRDLE 420 CT	3970185	2″	2″	523	400	227	Incorporated
۵.,	CB 40/2	3970153	1″ 1/2	1″ 1/2	1013	346	195	-
SE	CB 50/2	3970154	2″	2″	1150	354	250	-
IPO TR/	CB 50/2 CT	3970166	2″	2″	1150	354	320	Incorporated
COMPOSED GAS TRAINS	CBF 65/2	3970155	DN 65	DN 65	1166	475	285	-
0	CBF 65/2 CT	3970167	DN 65	DN 65	1166	475	285	Incorporated


PRESSURE DROP DIAGRAMS

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

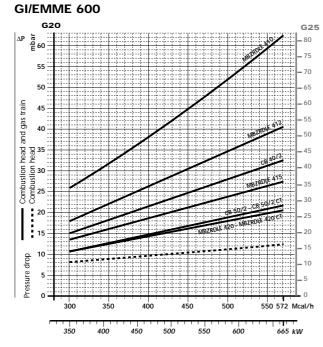

The value thus calculated represents the minimum required input pressure to the gas train.

Gas train	Code	Adapter	Seal Control
MBZRDLE 407	3970150	3000824	Accessory
MBZRDLE 410	3970151	3000824	Accessory
MBZRDLE 412	3970152	3010124	Accessory

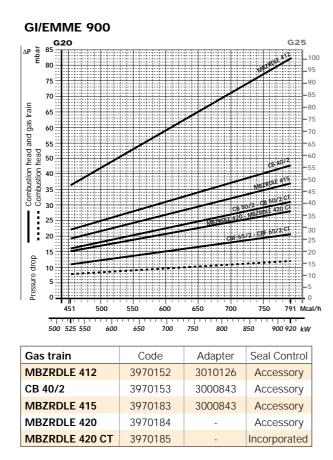


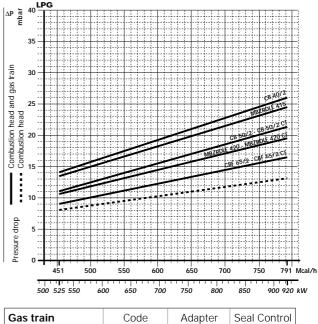
Gas train	Code	Adapter	Seal Control
MBZRDLE 410	3970151	3000824	Accessory
MBZRDLE 412	3970152	3010124	Accessory
MBZRDLE 415	3970183	-	Accessory
CB 40/2	3970153	-	Accessory

Gas train	Code	Adapter	Seal Control	
MBZRDLE 415	3970183	-	Accessory	
CB 40/2	3970153	-	Accessory	



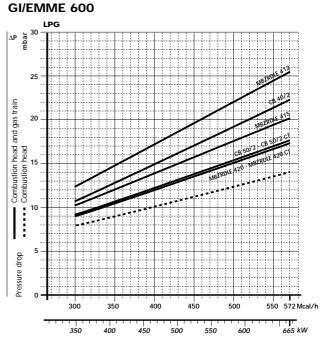
Gas train	Code	Adapter	Seal Control
CB 50/2	3970154	3000822	Accessory
CB 50/2 CT	3970166	3000822	Incorporated
MBZRDLE 420	3970184	3000822	Accessory
MBZRDLE 420 CT	3970185	3000822	Incorporated


▼


NATURAL GAS

Gas train	Code	Adapter	Seal Control
MBZRDLE 410	3970151	3000824	Accessory
MBZRDLE 412	3970152	3010124	Accessory
MBZRDLE 415	3970183	-	Accessory
CB 40/2	3970153	-	Accessory

GI/EMME 900



Gas train	Code	Adapter	Seal Control
CB 50/2	3970154	-	Accessory
CB 50/2 CT	3970166	-	Incorporated
CBF 65/2	3970155	3000825	Accessory
CBF 65/2 CT	3970167	3000825	Incorporated

note

Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

LPG

Gas train	Code	Adapter	Seal Control	
CB 50/2	3970154	3000822	Accessory	
CB 50/2 CT	3970166	3000822	Incorporated	
MBZRDLE 420	3970184	3000822	Accessory	
MBZRDLE 420 CT	3970185	3000822	Incorporated	

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

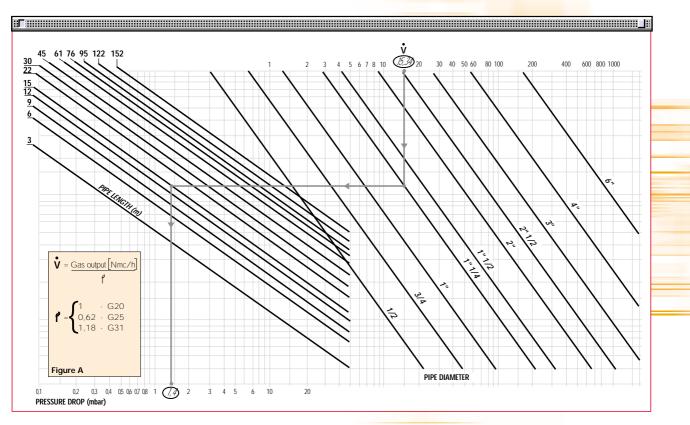
The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\dot{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.


Example:	- gas used	G25
-	- gas output	9.51 mc/h
	- pressure at the gas meter	20 mbar
	- gas line length	15 m
	- conversion coefficient	0.62 (see figure A)
- equivalent	t methane output $\mathbf{\hat{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix}$	= 15.34 mc/h

- once the value of 15.34 has been identified on the output scale ($\dot{\mathbf{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping); - from this point, move horizontally to the left until you meet the line that represents the length of 15 m

of the piping;

- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;

- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

▼

HYDRAULIC CIRCUIT

GI/EMME 300 - 400 - 600 - 900

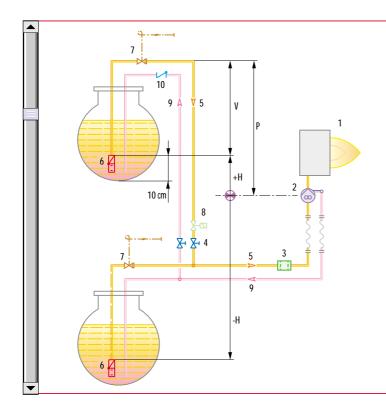
The burners are fitted with three valves (a safety valve and two oil delivery valves) along the oil line from the pump to the nozzle. A thermostatic control device, on the basis of required output, regulates oil delivery valves opening, allowing light oil passage trough the valves and to the nozzle.

Delivery valves open contemporary to the air damper opening, controlled by a servomotor.

The pumping group is fitted whit a pump, an oil filter and a regulating valve: through this it is possible to manaully adjusts atomised pressure, which in factory is preset at 12 bar.

Example of light oil pump of GI/EMME burners

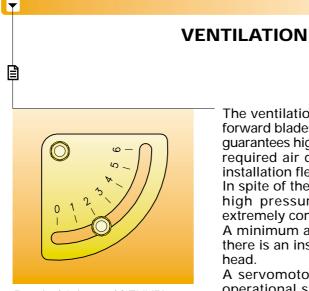
Р	Pump with filter and pressure regulator on the output circuit
VS	Safety valve on the output circuit
V1	1st stage valve
V2	2nd stage valve
PV	Nozzle holder
U1	1st stage nozzle
U2	2nd stage nozzle



SELECTING THE FUEL SUPPLY LINES

The fuel feed must be completed with the safety devices required by the local norms.

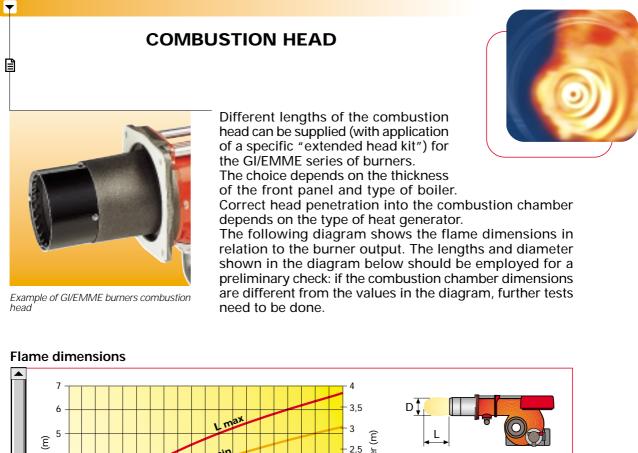
The table shows the choice of piping diameter for the various burners, depending on the difference in height between the burner and the tank and their distance.

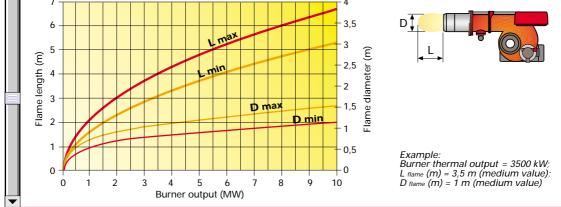

	MAXIMUM EQUIVALENT LENGTH FOR THE PIPING L[m]										
Model	▼ GI/EM	ME 300	▼ GI/EN	1ME 400	▼ GI/EN	/IME 600	▼ GI/EMME 900				
Piping diameter	8 mm	10 mm	8 mm	10 mm	10 mm	12 mm	12 mm	14 mm			
+H, -H (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)			
+4	33	83	20	51	51	112	71	138			
+3	22	55	18	46	46	99	62	122			
+4	19	48	16	39	39	86	58	106			
+1,5	18	44	14	35	35	79	51	98			
+1	16	40	13	32	32	73	44	90			
+0,5	15	37	12	29	29	65	40	82			
0	13	33	10	26	26	60	36	74			
-0,5	12	29	9	23	23	54	32	66			
-1	10	25	8	20	20	47	28	56			
-1,5	8	21	6	16	16	40	23	49			
-2	7	17	5	13	13	34	19	42			
-3	4	10	3	7	7	21	190	26			
-4	2	4	1	2	2	8	3	10			

Н	Difference in height pump-foot valve
Ø	Internal pipe diameter
Р	Height ≤ 10 m
V	Height ≤ 4 m
1	Burner
2	Burner pump
3	Filter
4	Manual shut off valve
5	Suction pipework
6	Bottom valve
7	Remote controlled rapid manual shutoff valve (compulsory in Italy)
8	Type approved shut off solenoid (compulsory in Italy)
9	Return pipework
10	Check valve

note

With ring distribution oil systems, the feasible drawings and dimensioning are the responsibility of specialised engineering studios, who must check compatibility with the requirements and features of each single installation.


Example of air damper of GI/EMME burners


The ventilation circuit comes with a forward blades centrifugal fan, which guarantees high pressure levels at the required air deliveries and permits installation flexibility.

In spite of the remarkable output power and of the very high pressure performance, GI/EMME models are extremely compact.

A minimum air pressure switch stops the burner when there is an insufficient quantity of air at the combustion head.

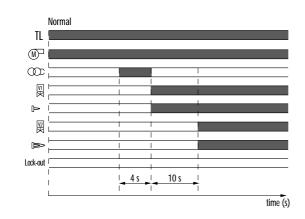
A servomotor allows to have a right air flow in any operational state and the closure of air damper when burner is in stand-by.


ADJUSTMENT

BURNER OPERATION MODE

With two stage operation, the GI/EMME series of burners can follow the temperature load requested by the system. A modulation ratio of 2:1 is reached thanks to the nozzles when burner is supplied with light oil and to the two-stage gas train when burner is supplied from gas; the air is adapted to the servomotor rotations.

On "two stage" operation, the burner gradually adjusts output to the requested level, by varying between two pre-set levels (see figure A).


Two stage operation

 \mathbf{T}

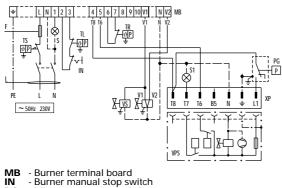
B

START UP CYCLE

- 0″ Thermostat closes. The motor starts running.
- Pre-ignition (*) 36"
- 1st stage valve opens; 1st stage flame 40"
- (**). If heat request is not yet satisfied, 2nd 50" stage solenoid valve opens. The start up cycle comes to an end. 2nd stage flame (***).

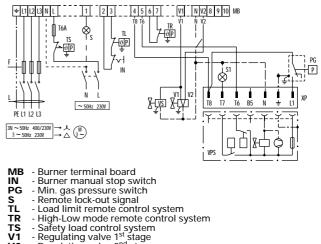
(*) 49" for GI/EMME 300. (**) 55" for GI/EMME 300. (***) 67" for GI/EMME 300.

WIRING DIAGRAMS

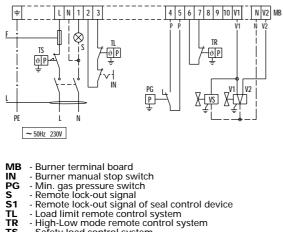

Electrical connections must be made by gualified and skilled personnel, according to the local norms.

TWO STAGE OPERATION

Y

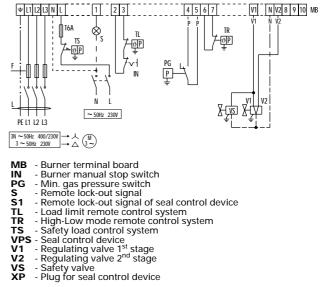

₿

GI/EMME 300-400 Without seal control


- PG
- Min. gas pressure switch
 Remote lock-out signal S TL
- Load limit remote control system
 High-Low mode remote control system
- TR - High-Low mode remote control system
 - Regulating valve 1st stage
 - Regulating valve 2nd stage
 - Safety valve
- TS V1 V2
- vs

GI/EMME 600-900 Without seal control

- Load limit remote control system
 High-Low mode remote control system
- Safety load control system
 Regulating valve 1st stage
 Regulating valve 2nd stage
 Safety valve
- V2
- vs


GI/EMME 300-400 With seal control

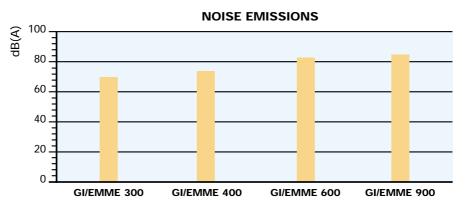
- TL TR

- High-Low mode remote cor
 Safety load control system
 VPS Seal control device
 V1 Regulating valve 1st stage
 V2 Regulating valve 2nd stage
 VS Safety valve
 XP Plug for seal control device

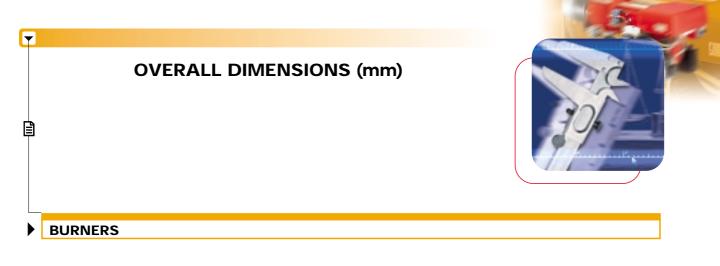
GI/EMME 600-900 With seal control

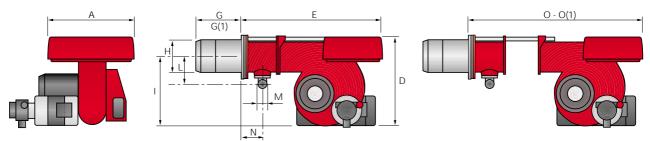
The following table shows the supply lead sections and the type of fuse to be used.

N	/lodel	▼GI/EMME 300	▼ GI/EMME 400	▼ GI/EN	1ME 600	▼ GI/EMME 900		
		230V	230V	230V	400V	230V	400V	
F	А	T6	T6	T6	T6	T16	T10	
L	mm ²	1,5	1,5	1,5	1,5	1,5	1,5	


EMISSIONS

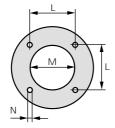
NO_X EMISSIONS


60 50 40 30 20 10 61/EMME 300 61/EMME 400 61/EMME 600 61/EMME 900

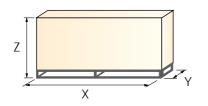

CO EMISSIONS

The emission data has been measured in the various models at maximum output, according to EN 676 and EN 267 standard. Ţ

Ē



Model	А	E	G	G(1)	D	Н	L	М	Ι	Ν	0	O(1)
► GI/EMME 300	410	610	185	320	397	140	165	1″ 1/2	292	97	978	978
► GI/EMME 400	410	610	187	320	397	150	165	1″ 1/2	292	97	1018	1018
► GI/EMME 600	410	645	187	320	437	155	165	1″ 1/2	332	97	1063	1063
▶ GI/EMME 900	410	770	227	360	485	175	195	2″	370	131	1260	1260


(1) Dimension with "extended head".

BURNER - BOILER MOUNTING FLANGE

Model	L	Μ	N
► GI/EMME 300	160	155	M 10
► GI/EMME 400	160	165	M 10
► GI/EMME 600	160	165	M 10
► GI/EMME 900	195	185	M 12

PACKAGING

Model	Х	Y	Z	kg
► GI/EMME 300	835	530	453	42
I/EMME 400	835	530	453	49
I/EMME 600	880	530	500	64
► GI/EMME 900	103	530	435	88

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

- All the burners have slide bars, for easier installation and maintenance.
- ► After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- ► Fit the gas train choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook
- Refit the burner casing to the slide bars.
- ▶ Install the nozzle choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook.
- Check the position of the electrodes.
- Close the burner, sliding it up to the flange, keeping it slightly raised to avoid the flame stability disk rubbing against the blast tube.

ELECTRICAL AND HYDRAULIC CONNECTIONS AND START UP

- The burners are supplied for connection to two pipes fuel supply system.
- Connect the ends of the flexible pipes to the suction and return pipework using the supplied nipples.
- ▶ Make the electrical connections to the burner following the wiring diagrams included in the instruction handbook.
- > Prime the pump by turning the motor (after checking rotation direction if it is a three phase motor).
- Adjust the gas train for start-up On start-up, check: Pressure pump and valve unit regulator (to max. and min.) Gas pressure at the combustion head (to max. and min. output) Combustion quality, in terms of unburned substances and excess air.

+

E

BURNER ACCESSORIES

Nozzles

Y

₿

The nozzles must be ordered separately. The following table shows the features and codes on the basis of the maximum required fuel delivery.

Nozzles type 60° B				
Burner	GPH	Rated delivery (kg/h) at 12 bar	Nozzle code	
GI/EMME 300	1,75	6,8	3042114	
GI/EMME 300	2,00	7,8	3042126	
GI/EMME 300	2,25	8,7	3042132	
GI/EMME 300 - 400	2,50	9,7	3042140	
GI/EMME 300 - 400	3,00	11,6	3042158	
GI/EMME 300 - 400	3,50	13,6	3042162	
GI/EMME 300 - 400 - 600	4,00	15,6	3042172	
GI/EMME 400 - 600	4,50	17,5	3042182	
GI/EMME 400 - 600	5,00	19,4	3042192	
GI/EMME 400 - 600	5,50	21,3	3042202	
GI/EMME 600 - 900	6,00	23,3	3042212	
GI/EMME 600 - 900	7,00	27,1	3042232	
GI/EMME 600 - 900	7,50	29,1	3042242	
GI/EMME 900	8,50	33	3042262	
GI/EMME 900	9,50	36,8	3042282	
GI/EMME 900	10	38,8	3042292	
GI/EMME 900	11	42,3	3042312	
GI/EMME 900	12,00	46,5	3042322	

Extended head kit

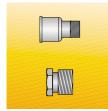
"Standard head" burners can be transformed into "extended head" versions, by using the special kit. The kits available for the various burners, giving the original and the extended lengths, are listed below.

<u></u>	- F	
	U	

Extended head kit			
Burner	Standard head length (mm)	Extended head length (mm)	Kit code
GI/EMME 300	185	320	3000836
GI/EMME 400	187	320	3010001
GI/EMME 600	187	320	3010002
GI/EMME 900	227	360	3010003

Sound proofing box

If noise emission needs reducing, sound-proofing boxes are available, as given in the following table:



Sound proofing box			
Burner	Box type	Box code	
GI/EMME 600	C2	3000777	
GI/EMME 900	C3	3000778	

GAS TRAIN ACCESSORIES

Adapters

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner.

Adapters				
Burner	Gas train	Dimensions	Adapter code	
GI/EMME 300	MBZRDLE 407-410	3/4" 1" 1/2	3000824	
	MBZRDLE 412	1"1/4	3010124	
	MBZRDLE 410	3/4" 1" 1/2	3000824	
GI/EMME 400	MBZRDLE 412	1"1/4 1" 1/2	3010124	
	MBZRDLE 420 - CB 50/1	2" 1" 1/2	3000822	
	MBZRDLE 410	3/4" 1" 1/2	3000824	
GI/EMME 600	MBZRDLE 412	1"1/4	3010124	
	MBZRDLE 420 - CB 50/1	2" 1" 1/2	3000822	
	MBZRDLE 412	1"1/4 2"	3010126	
GI/FMMF 900	MBZRDLE 415 - CB 40/1	1" 1/2	3000843	
	CBF 65	DN 65 2"1/2	3000825	

▼

T

B

Seal control kit

▼

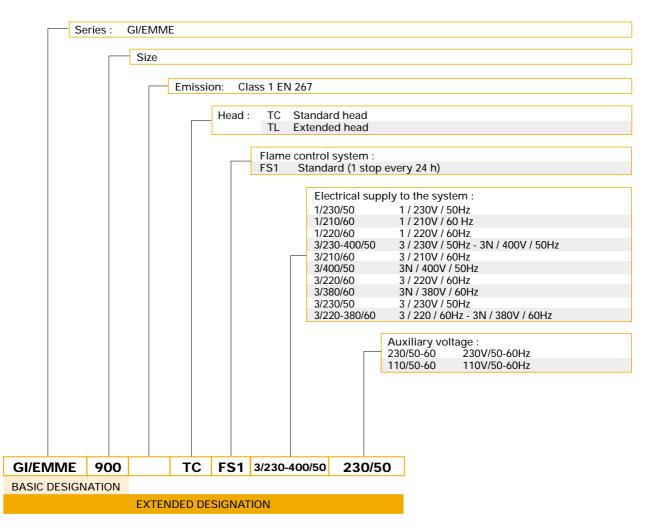
To test the valve seals on the gas train, a special "seal control kit" is available.

Seal control kit		
Burner Gas train Kit cod		Kit code
	MBZRDLE 407 - MBZRDLE 410 -	3010123
GI/EMME 300	MBZRDLE 412	
	MBZRDLE 415 - CB 40/2 -	3010125
	MBZRDLE 410 - MBZRDLE 412	3010123
GI/EMME 400	MBZRDLE 415 - MBZRDLE 420 3010	
	CB 40/2 - CB 50/2	
	MBZRDLE 410 - MBZRDLE 412	3010123
GI/EMME 600	MBZRDLE 415 - MBZRDLE 420	3010125
	CB 40/2 - CB 50/2	3010125
	MBZRDLE 412	3010123
GI/EMME 900	MBZRDLE 415 - MBZRDLE 420	3010125
	CB 40/2 - CB 50/2 - CBF 65/2	3010125

Stabiliser spring

Accessory springs are available to vary the pressure range of the gas train stabilisers.

Gas train CBF 65/2	Stabiliser spring	
Gas train	Spring	Spring code
CBF 65/2	Red from 25 to 55 mbar	3010133
CBF 65/2	Black from 60 to 110 mbar	3010135
CBF 65/2	Pink from 90 to 150 mbar	3090456



SPECIFICATION

A specific index guides your choice of burner from the various models available in the GI/EMME series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

LIST OF	AVAIL	ABLE I	MODELS		
GI/EMME 3 GI/EMME 3		FS1 FS1	1/220/60 1/230/50	220/60 230/50	GI/EMME 900 TC FS1 3/210/60 120/60 GI/EMME 900 TC FS1 3/220-380/60 220/60 GI/EMME 900 TC FS1 3/230-400/50 230/50
GI/EMME 4 GI/EMME 4 GI/EMME 4	00 TC	FS1 FS1 FS1	1/210/60 1/230/50 3/220-380/60	120/60 230/50 220/60	GI/EMME 900 TC FS1 3/230-400/50 230/50
GI/EMME & GI/EMME & GI/EMME &	500 TC	FS1 FS1 FS1	3/210/60 3/220-380/60 3/230-400/50	120/60 220/60 230/50	Other versions are available on request.

Ţ

₿

PRODUCT SPECIFICATION

Burner:

-

Monoblock forced draught dual fuel burner, with two-stage operation, made up of:

- Air suction circuit
- Fan with forward curved blades
- Air damper for setting controlled by a servomotor
- Combustion head, that can be set on the basis of required output
- Maximum gas pressure switch
- Minimum air pressure switch
- Fan electrical motor
- Pump electrical motor
- Gears pump for high pressure fuel supply, fitted with:
 - filter
 - pressure regulator
 - connections for installing a pressure gauge and a a vacuometer
 - internal by-pass for single pipe installation
- Valve unit with a double oil safety valve on the output circuit
- UV photocell for flame detection
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 40 protection level.

Gas train:

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 100), fitted with: - Filter

- Stabiliser
- Minimum gas pressure switch
- Safety valve
- Valve seal control (for output > 1200 kW)
- One stage working valve with ignition gas output regulator.

Conforming to:

- 89/336/EEC directive (electromagnetic compatibility)
- 73/23/EEC directive (low voltage)
- EN 267 (liquid fuel burners)
- EN 676 (gas fuel burners).

Standard equipment:

- 1 gas train gasket
- 1 flange gasket
- 1 insulating screen
- 2 flexible hoses for connection to the oil supply circuit
- 2 nipples for connection to the pump
- 3 wiring looms fittings for electrical connections
- 8 screws for fixing the burner flange to the boiler
- 1 LPG kit
- 2 nozzles for light oil
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue.

Available accessories to be ordered separately:

- Nozzles
- Head extension kit
- Sound proofing box
- Adapters
- Stabiliser spring
- Seal control kit.

Lineagrafica

RIELLO s.p.a. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

MODULATING DUAL FUEL BURNERS

CE

ERIES		407/820÷1540 kW
	► GI/EMME 2000	581/1163÷2325 kW
	► GI/EMME 3000	872/1744 ÷ 3488 kW
	► GI/EMME 4500	1163/2350÷4650 kW

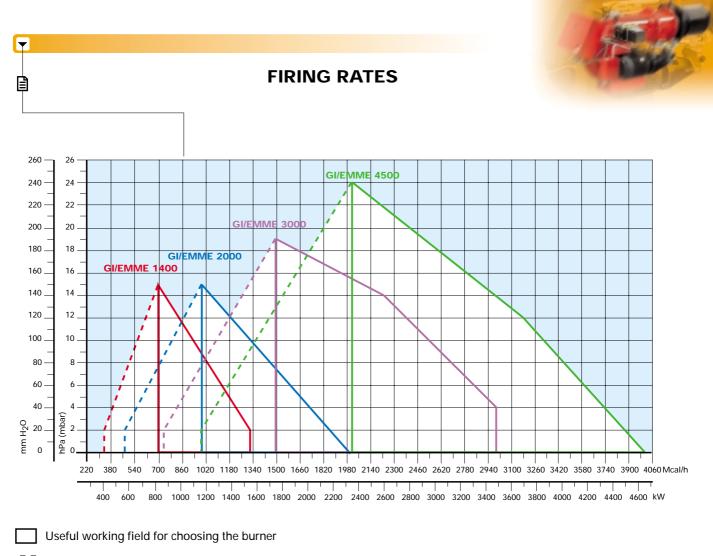
The GI/EMME 1400-4500 series of burners covers a firing range from 407 to 4650 kW. They have been designed for high output users and they are suitable for matching with all kinds of boilers, with normal or pressurized combustion chamber.

Operation can be "two stage progressive" or, alternatively, "modulating" with the installation of a PID logic regulator and probes. Two operating options, gas or light oil, are available at the touch of a switch. The light oil circuit comes with its own electric motor: so the pump is stopped during gas operation to prevent pump seizure and to avoid oil in circulation. A wide range of accessories and gas trains guarantee maximum working flexibility.

Ξ

TECHNICAL DATA

N	Model			▼ GI/EMME 1400	▼ GI/EMME 2000	▼ GI/EMME 3000	▼ GI/EMME 4500	
D	urner operation	modo		Modulating (with	h regulator and probes	accessories) or two st	tago progrossivo	
	-			would the with	5 1	•	lage progressive	
	Nodulating ratio	_		3:1 SQM 10.16502				
5	ervomotor	type	-					
		run time	S	407/000 4540	42		44/0/0050 4/50	
н	leat output		kW	407/820-1540	581/1163-2325	872/1744-3488	1163/2350-4650	
			Mcal/h	350/705-1324	500/1000-2000	750/1500-3000	1000/2021-4000	
	Vorking tempera		°C min/max	0/40				
0	Dil	Net calorific value	kWh/kg		11			
		Viscosity	mm²/s (cSt)		4-6 (at			
		Delivery	kg/h	34/69-130	49/99-197	74/148-296	99/199-394	
P	ump	type		TA2	TA3	TA4	TA5	
		delivery	kg/h	336 (at 25 bar)	546 (at 25 bar)	706 (at 25 bar)	1008 (at 25 bar)	
A	tomised pressu	re	bar		2!	5		
F	uel temperature		max °C		6	0		
F	uel preheater				N	0		
G	520	Net calorific value	kWh/Nm ³		1(0		
		Density	kg/Nm ³		0,7	71		
		Gas delivery	Nm ³ /h	41/82-154	58/116-232,5	87/174-349	116/235-465	
G	625	Net calorific value	kWh/Nm ³		8,	6		
		Density	kg/Nm ³		0,7			
		Gas delivery	Nm ³ /h	47/95-179	68/135-270	101/203-406	135/273-541	
	PG	Net calorific value	kWh/Nm ³	4770 177	25		100/2/0041	
-		Density	kg/Nm ³		2,0			
		-	Nm ³ /h	16/32-60	23/45-90	34/68-135	45/91-180	
E		Gas delivery		10/32-00			45/91-160	
			type	Centrifugal with reverse curve blades				
	ir temperature		max °C	60				
	lectrical supply		Ph / Hz / V	3N/50/230-400 (±10%)				
	uxiliary electric	al supply	Ph / Hz / V	1/50/230 (±10%)				
	ontrol box		type	LFL 1.333				
Т	otal electrical po	ower	kW	5,1	6,1	12	15,5	
A	uxiliary electric	al power	kW	1	1	1,5	2	
н	leaters electrical	power	kW			•		
P	rotection level		IP		4	4		
P	ump motor elec	trical power	kW	1,1	1,1	1,5	1,5	
R	ated pump mot	or current	Α	3	3	3,7	3,7	
P	ump motor star	t up current	Α					
P	ump motor prot	tection level	IP		44	4		
Fa	an motor electri	cal power	kW	3	4	9	12	
R	ated fan motor	current	Α	6,1	8	17	23	
	an motor start u		Α	44,5	64	124,1	158,7	
	an motor protec	•	IP	44	44	44	55	
	nition transform		 type	••				
'9			V1- V2		230 V - 2) v 6 kV		
			11 - 12		1,9 A -			
			11 - 12					
	peration		-10(4)	05.4	Intermittent (at least		02.4	
	ound pressure		dB(A)	85,4	88	92	93,1	
	ound power		W					
0	Dil	CO emission	mg/kWh		< 5			
		Grade of smoke indicator			<			
		CxHy emission	mg/kWh					
		NOx emission	mg/kWh		< 2	50		
G	520	CO emission	mg/kWh		< 1	00		
		NOx emission	mg/kWh		< 1	50		
D	Directive				90/396 - 89/33	6 - 73/23 EEC		
C	onforming to				EN 267 -	EN 676		
C	ertification			CE 0085AQ0712	CE 0085AQ0712	CE 0085AQ0712	CE 0085AQ0712	
1				DIN 5G830/97 M	DIN 5G831/97 M	DIN 5G832/97 M	DIN 5G833/97 N	


Reference conditions:

Y

₿

Temperature: 20°C - Pressure: 1013,5 mbar - Altitude: 100 m a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Modulation range

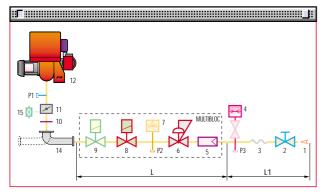
Test conditions conforming to EN 267 - EN 676: Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 m a.s.l.

FUEL SUPPLY

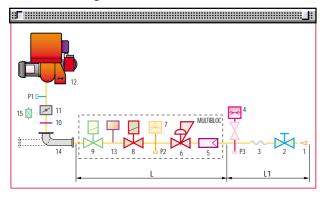
GAS TRAIN

The burners are fitted with a butterfly valve to regulate the fuel, controlled by a variable profile cam servomotor. Fuel can be supplied either from the right or left hand sides, on the basis of the application requirements.

A maximum gas pressure switch stops the burner in case of an excess of pressure in fuel line.


The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.

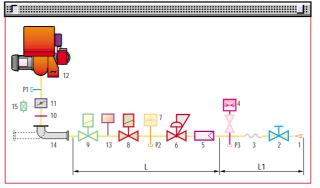
The gas train can be "Multibloc" type (containing the main components in a single unit) or "Composed" type (assembly of the single components).



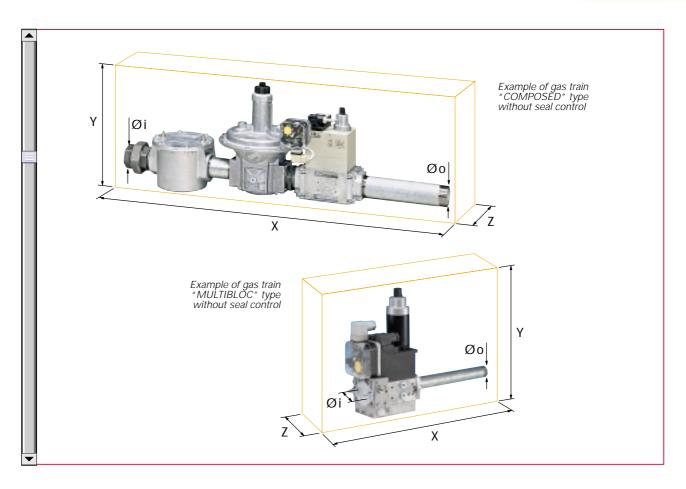
Example of burner of GI/EMME series with connected gas train


MULTIBLOC gas train without seal control

MULTIBLOC gas train with seal control



COMPOSED gas train without seal control


1	Gas input pipework
2	Manual valve
3	Anti-vibration joint
4	Pressure gauge with pushbutton cock
5	Filter
6	Pressure regulator (vertical)
7	Minimum gas pressure switch
8	VS safety solenoid (vertical)
9	VR regulation solenoid (vertical) Two settings: - firing output (rapid opening) - maximum output (slow opening)
10	Gasket and flange supplied with the burner
11	Gas adjustment butterfly valve
12	Burner
13	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
14	Gas train-burner adapter.
15	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

T

B

Gas trains are approved by standard EN 676 together with the burner.

▼

The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to GI/EMME burners, inlet and outlet diameters and seal control if fitted.

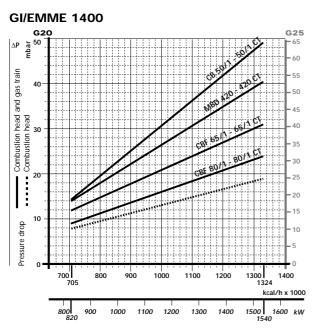
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Multibloc" type is 300 mbar, and the one of the gas train "Composed" type is 500 mbar.

	Name	Code	Øi	Øo	X mm	Y mm	Z mm	SC
MULTIBLOC GAS TRAINS	MBD 420	3970181	2″	2"	523	300	100	-
MULT GAS T	MBD 420 CT	3970182	2″	2"	523	300	227	Incorporated
	CB 50/1	3970146	2″	2″	986	328	250	-
	CB 50/1 CT	3970160	2″	2″	986	328	250	Incorporated
ED	CBF 65/1	3970147	DN 65	DN 65	874	356	285	-
COMPOSED GAS TRAINS	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	Incorporated
MP S T	CBF 80/1	3970148	DN 80	DN 80	934	416	285	-
CO G B	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	Incorporated
	CBF 100/1	3970149	DN 100	DN 100	1054	501	350	-
	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	Incorporated

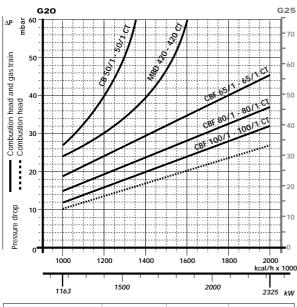
When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner.

For further information see "Accessories" section.

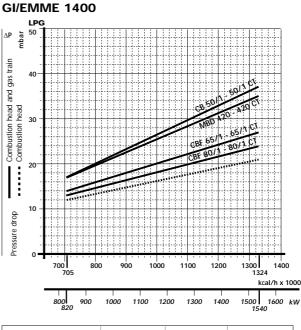

PRESSURE DROP DIAGRAM

The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure.

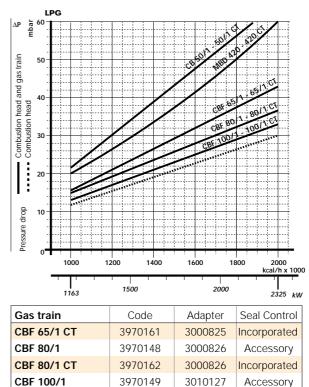
The value thus calculated represents the minimum required input pressure to the gas train.


NATURAL GAS

LPG

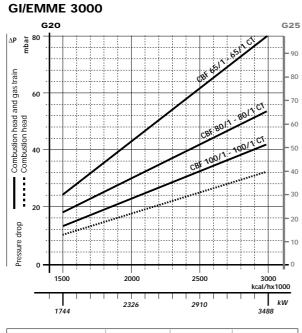


3970181	-	Accessory
3970182	-	Incorporated
3970146	-	Accessory
3970160	-	Incorporated
	3970182 3970146	3970182 - 3970146 -

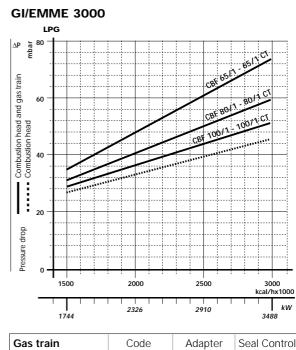

Gas train	Code	Adapter	Seal Control
MBD 420	3970181	-	Accessory
MBD 420 CT	3970182	-	Incorporated
CB 50/1	3970146	-	Accessory
CB 50/1 CT	3970160	-	Incorporated
CBF 65/1	3970147	3000825	Accessory

Gas train	Code	Adapter	Seal Control
CBF 65/1	3970147	3000825	Accessory
CBF 65/1 CT	3970161	3000825	Incorporated
CBF 80/1	3970148	3000826	Accessory
CBF 80/1 CT	3970162	3000826	Incorporated

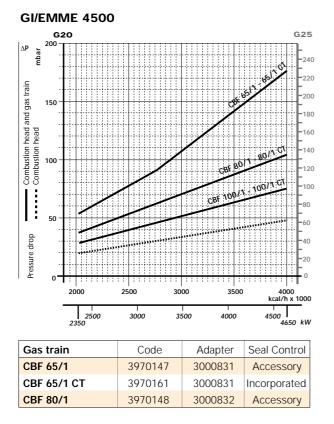
CBF 100/1 CT



3970163


3010127

Incorporated


NATURAL GAS

Gas train	Code	Adapter	Seal Control
CBF 65/1	3970147	3000831	Accessory
CBF 65/1 CT	3970161	3000831	Incorporated
CBF 80/1	3970148	3000832	Accessory

Gas train	Code	Adapter	Seal Control
CBF 80/1 CT	3970162	3000832	Incorporated
CBF 100/1	3970149	3010127	Accessory
CBF 100/1 CT	3970163	3010127	Incorporated

GI/EMME 4500 LPG 200 ΔP mbar Combustion head and gas train 150 100 50 Pressure drop 0 3000 3500 2500 2000 4000 kcal/h x 1000 2500 2350 4500 4650 kW 3000 3500 4000

Gas train	Code	Adapter	Seal Control
CBF 80/1 CT	3970162	3000832	Incorporated
CBF 100/1	3970149	3010127	Accessory
CBF 100/1 CT	3970163	3010127	Incorporated

LPG

note Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

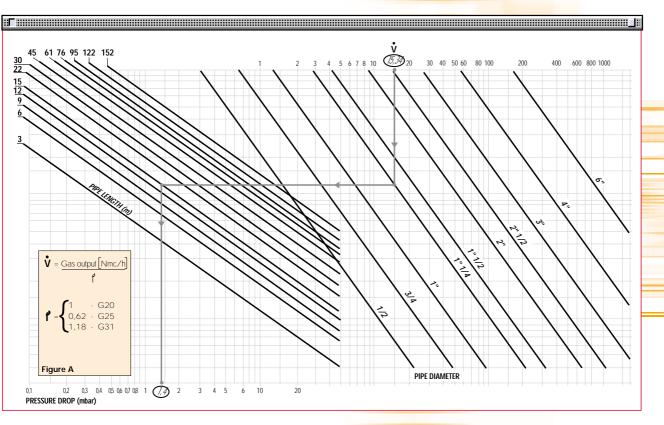
Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\check{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example: - gas used G25- gas output 9.51 mc/h- pressure at the gas meter 20 mbar- gas line length 15 m- conversion coefficient 0.62 (see figure A)


- equivalent methane output $\mathbf{\dot{V}} = \begin{bmatrix} 9.51\\ 0.62 \end{bmatrix} = 15.34$ mc/h

- once the value of 15.34 has been identified on the output scale ($\dot{\mathbf{v}}$), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

- from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;

- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale; - subtract the determined pressure drop from the meter pressure, the correct pressure level will be found

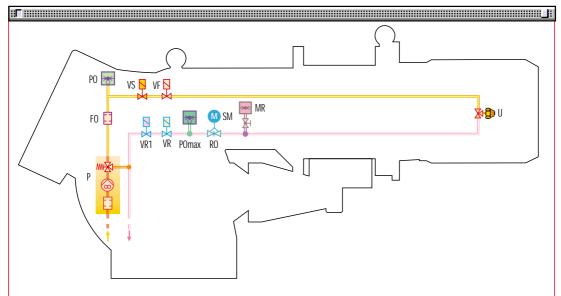
- subtract the determined pr for the choice of gas train;

- correct pressure = (20-1.4) = 18.6 mbar

HYDRAULIC CIRCUIT

The hydraulic circuit of the GI/EMME series of burners is characterised by a fuel pump with an independent motor.

The burners are fitted with two values (a safety value and an operation value) and an oil filter along the oil line from the pump to the nozzle.

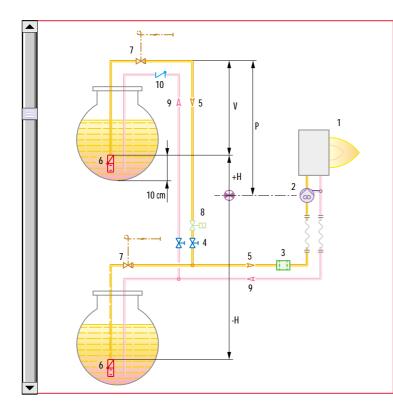

A pressure regulator on the return circuit from the nozzle enables the quantity of fuel burnt to be varied. Two safety valves on the return circuit avoid oil leakage from the nozzle when the burner is in stand-by and prepurge phase.

The models are fitted with a maximum pressure switch on the oil return circuit, and a minimum oil pressure switch on the oil line from the pump to the nozzle.

Example of oil circuit in GI/EMME series of burners

EN 267 > 100 kg/h

Р	Pump with filter and pressure regulator on the output circuit
FO	Oil filter
VS	Safety valve on the output circuit
VF	Working valve on the output circuit
U	Nozzle
MR	Pressure gauge on the return circuit
SM	Servomotor
RO	Pressure regulator on the return circuit
PO max	Max. oil pressure switch on the return circuit
VR	1st safety valve on the return circuit
VR1	2nd safety valve on the return circuit
PO	Min. oil pressure switch on the output circuit



SELECTING THE FUEL SUPPLY LINES

The fuel feed must be completed with the safety devices required by the local norms.

The table shows the choice of piping diameter for the various burners, depending on the difference in height between the burner and the tank and their distance.

	MAXIMUM EQUIVALENT LENGTH FOR THE PIPING L[m]								
Model	▼ GI/EN	MME 1400	▼ GI/EN	▼ GI/EMME 2000		/IE 3000	▼ GI/EMN	▼ GI/EMME 4500	
Piping diameter	14mm	16mm	16mm	18mm	G 1/2″	G 3/4″	G 3/4″	G 1″	
+H, -H (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	Lmax (m)	
+2,0	55	70	40	60	25	85	55	130	
+1,5	45	65	35	55	23	80	50	120	
+1,0	40	60	30	50	20	70	45	110	
+0,5	35	50	25	45	18	65	40	100	
0	30	45	20	40	15	60	35	90	
-0,5	25	40	18	35	12	50	30	80	
-1,0	20	35	15	30	10	45	25	70	
-1,5	15	30	13	25	8	35	20	60	
-2,0	10	25	10	20	5	30	15	45	
-3,0	5	15	5	10	3	15	10	25	

Н	Difference in height pump-foot valve
Ø	Internal pipe diameter
Ρ	Max. height 10 m
۷	Height 4 m
1	Burner
2	Burner pump
3	Filter
4	Manual shut off valve
5	Suction pipework
6	Bottom valve
7	Remote controlled rapid manual shut off valve (compulsory in Italy)
8	Type approved shut off solenoid valve (compulsory in Italy)
9	Return pipework
10	Check valve

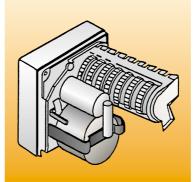
▶ note With ring distribution oil systems, the feasible drawings and dimensioning are the responsibility of specialised engineering studios, who must check compatibility with the requirements and features of each single installation.

VENTILATION

The ventilation circuit comes with a forward blades centrifugal fan, which guarantees high pressure levels at the required air deliveries and permits installation flexibility.

Y

₿


T

B

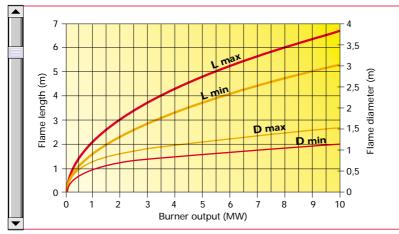
In spite of the remarkable output power and of the very high pressure performance, GI/EMME models are extremely compact.

Sound proofing boxes help to reduce the noise level.

A variable profile cam connects fuel and air setting, ensuring fuel efficiency at all firing rates.

Example of servomotor mounted on GI/EMME series of burner

COMBUSTION HEAD


Two different combustion head length can be selected for the various models of GI/EMME series of burners.

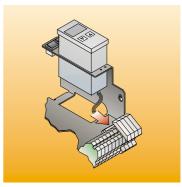
The choice depends on the thickness of the front panel and type of boiler. Correct head penetration into the combustion chamber depends on the type of heat generator.

These burners are equipped with a variable geometry combustion head. This enables optimum combustion performance throughout the working field, ensuring peak combustion efficiency thus saving on fuel consumption. The following diagram shows the flame dimensions in relation to the burner output. The lengths and diameter shown in the diagram below should be employed for a preliminary check: if the combustion chamber dimensions are different from the values in the diagram, further tests need to be done.

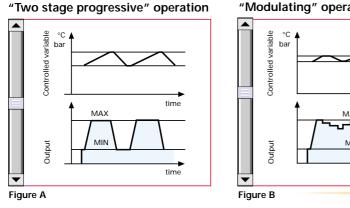
Example of GI/EMME combustion head

Example: Burner thermal output = 3500 kW; L flame (m) = 3,5 m (medium value); D flame (m) = 1 m (medium value)

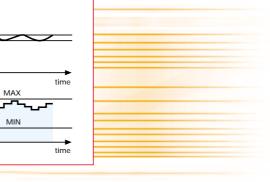
Flame dimensions

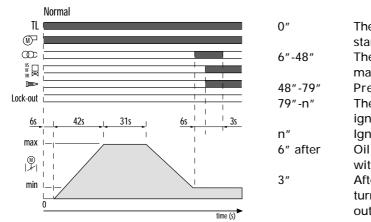

ADJUSTMENT

BURNER OPERATION MODE


The GI/EMME series of burners can be "two stage progressive" or "modulating".

During "two stage progressive" operation, the burner gradually adapts the output to the required level, by varying between two preset levels (see figure A).


During "modulating" operation, normally required in steam generators, in superheated water boilers or thermal oil boilers, a specific regulator and probes are required. These are supplied as accessories that must be ordered separately. The burner can work for long periods at intermediate output levels (see figure B).


Example of a regulator

"Modulating" operation

START UP CYCLE

The burner begins the start-up cycle: the motor starts turning.

The servomotor opens the air damper at the maximum position. Pre-purge phase with air damper open.

The servomotor takes the air damper to the ignition position. Ignition transformer turns on.

Oil solenoid valves open and flame detection with P.E. cell is activated.

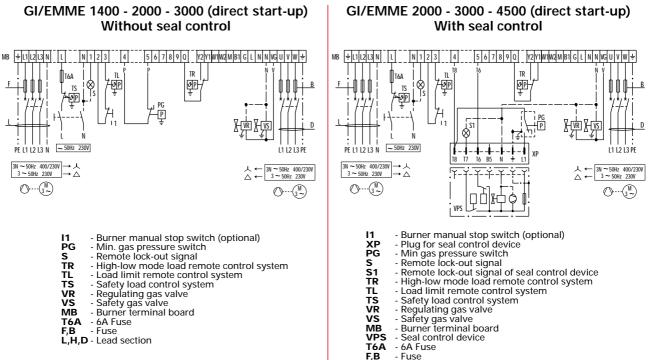
After a safety time, the ignition transformer turns off if there is the flame, otherwise lockout happens.

Y

B

WIRING DIAGRAMS

Electrical connections must be made by qualified and skilled personnel, according to the local norms.


Y

₿

Example of the terminal board for the electrical connections for GI/EMME burner models

***TWO STAGE PROGRESSIVE** OPERATION

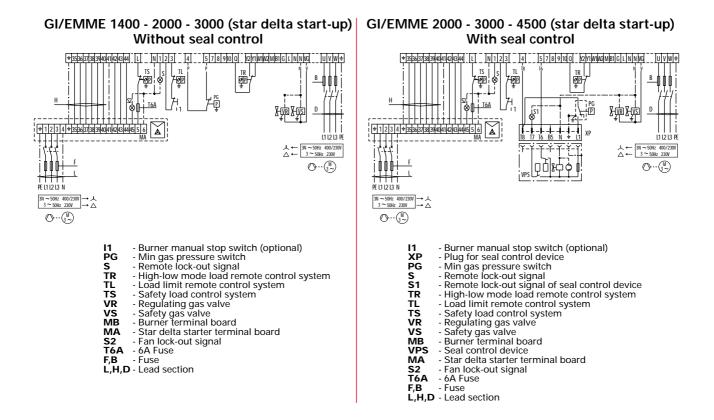
F,B - Fuse L,H,D - Lead section

RWF 40

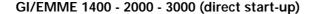
UVW÷

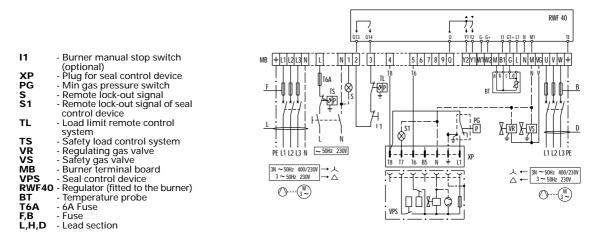
L1 L2 L3 P

A ← 3N ~ 50Hz 400/23 A ← 3 ~ 50Hz 230V $\bigcirc \cdots \bigcirc \blacksquare$


77

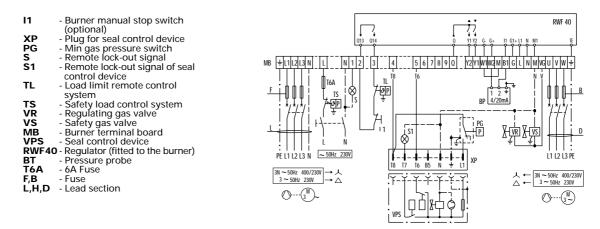
Ϋ́́


t₽ ΠΠ

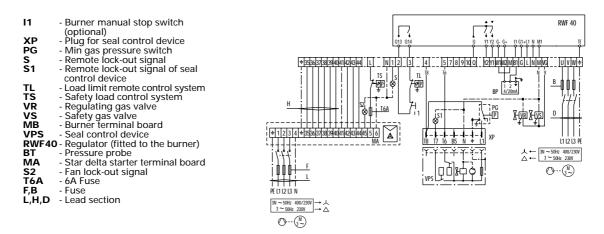

X triangle the second s

tat A

"MODULATING" OPERATION - TEMPERATURE PROBE

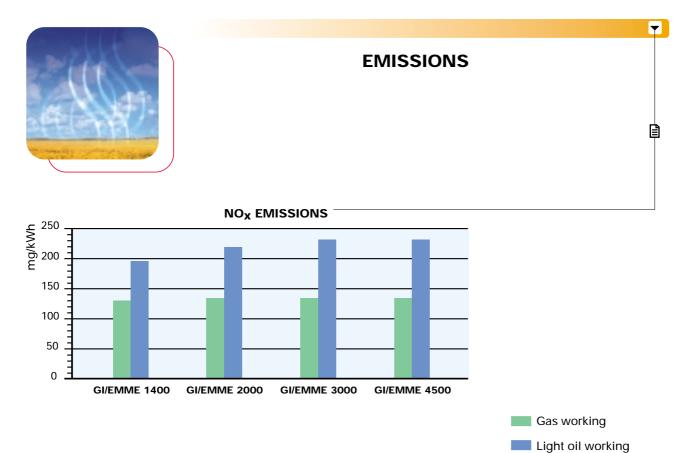


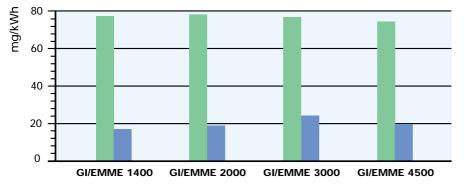
GI/EMME 2000 - 3000 - 4500 (star delta start-up)


		013 014 0
er manual stop switch	+ 35363738394041424344	L N 1 2 3 4 5 7 8 9 10 0
		T - T - T - T - T - T
for soal control dovico	11111111111	
	!	⊁፼¦ጶଁ ⊁፼
ote lock-out signal	н	
ote lock-out signal of seal	<u> +++++++</u> ∦	o <u>mii⊺6A</u> /[₁ -+→ il
ol device	:	
limit remote control system		
	i ÷ 1 2 3 4 ÷3536373839404142434445	56 × × ×
lating gas value	· · · · · · · · · · · · · · · · · · ·	<u>MA</u> [] [18 17 16 B5 N ÷ L1
	; *, *, * j	<u> </u>
		i' L' L <u>-</u> -+
	i n n n <u>F</u>	ㅁ꿉խㅗㅊ
control device	ΙΨΨΨ¦ L	ᆘᄵᆛᄱᆁᄔᅛᅴᇒ
delta starter terminal board	1111 -	Vr3
ock-out signal	PE L1 L2 L3 N	
lator (fitted to the burner)	3N ~ 50Hz 400/230V → ↓	
and a make	3 ~ 50Hz 230V → △	
lse	U(3~)	
	er manual stop switch onal) for seal control device gas pressure switch ote lock-out signal ot elock-out signal ol device limit remote control system y load control system y load control system lating gas valve y gas valve er terminal board control device delta starter terminal board ock-out signal lator (fitted to the burner) perature probe use	Image: Detail of the seal control device gas pressure switch ote lock-out signal of seal ol deviceImage: Device the seal ol deviceImit remote control system y load control system lating gas valve er terminal board control deviceImit remote control system the seal control system the seal control deviceImit remote control system y gas valve er terminal board control device delta starter terminal board ock-out signal lator (fitted to the burner) perature probe useImage: Device device the seal control device

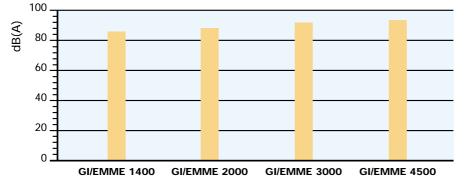
MODULATING" OPERATION - PRESSURE PROBE

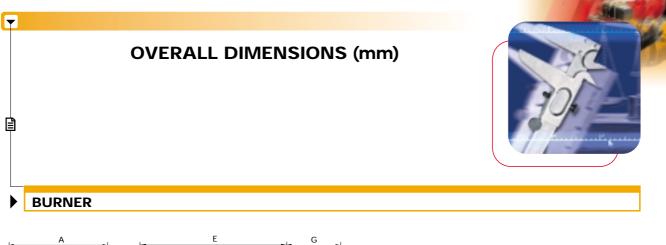
GI/EMME 1400 - 2000 - 3000 (direct start-up)

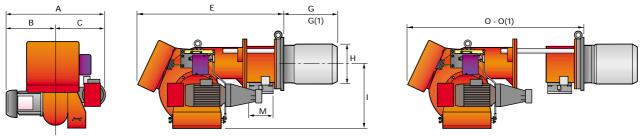



The following table shows the supply lead sections and the type of fuse to be used.

		Direct start-up						Star delta	a start-up			
Model	▼ GI/EM	ME 1400	▼ GI/EM	ME 2000	▼ GI/EMI	ME 3000	▼ GI/EM	ME 2000	▼ GI/EM	ME 3000	▼ GI/EMI	ME 4500
	230 V	400 V	230 V	400 V	230 V	400 V	230 V	400 V	230 V	400 V	230 V	400 V
FΑ	20	16	25	20	40	32	25	20	40	32	63	40
ΒA	6	4	6	4	10	6	6	4	10	6	10	6
L mm ²	2,5	2,5	2,5	2,5	6	4	2,5	2,5	2,5	2,5	6	4
D mm ²	1,5	1,5	1,5	1,5	2,5	1,5	1,5	1,5	1,5	1,5	2,5	1,5
H mm ²	-	-	-	-	-	-	1,5	1,5	2,5	2,5	4	2,5

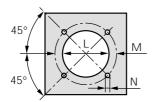




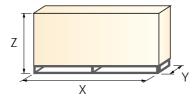


NOISE EMISSIONS

The emission data has been measured in the various models at maximum output, according to EN 676 and EN 267 standard.



Model	А	В	С	E	G	G(1)	Н	М	I	0	O(1)
► GI/EMME 1400	858	376	482	1090	385	495	250	2″	467	1407	1585
► GI/EMME 2000	878	396	482	1090	385	495	260	DN 80	467	1407	1585
► GI/EMME 3000	985	447	538	1320	476	606	336	DN 80	525	1796	2000
► GI/EMME 4500	1046	508	538	1320	476	606	336	DN 80	525	1796	1926


(1) Length with extended combustion head.

BURNER - BOILER MOUNTING FLANGE

Model	L	М	Ν
► GI/EMME 1400	255	260	M 16
► GI/EMME 2000	265	260	M 16
► GI/EMME 3000	340	310	M 20
► GI/EMME 4500	340	310	M 20

PACKAGING

Model	Х	Y	Z	kg
► GI/EMME 1400	1670	1010	780	190
• GI/EMME 2000	1670	1010	780	200
• GI/EMME 3000	2000	1160	870	280
• GI/EMME 4500	2000	1160	870	280

INSTALLATION DESCRIPTION

T

₿

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

BURNER SETTING

- All the burners have slide bars, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as a template, dismantle the blast tube from the burner and fix it to the boiler.
- Adjust the combustion head.
- ▶ Fit the gas train choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook
- Refit the burner casing to the slide bars.
- Install the nozzle choosing this on the basis of the maximum boiler output and following the diagrams included in the burner instruction handbook.
- Check the position of the electrodes.
- Close the burner, sliding it up to the flange, keeping it slightly raised to avoid the flame stability disk rubbing against the blast tube.

ELECTRICAL AND HYDRAULIC CONNECTIONS AND START UP

- The burners are supplied for connection to two pipes fuel supply system.
- Connect the ends of the flexible pipes to the suction and return pipework using the supplied nipples.
- Make the electrical connections to the burner following the wiring diagrams included in the instruction handbook.
- Prime the pump by turning the motor (after checking rotation direction if it is a three phase motor).
- Adjust the gas train for first start
- On start up, check:
- ▶ Pressure pump and valve unit regulator (to max. and min.)
- Gas pressure at the combustion head (to max. and min. output)
- Combustion quality, in terms of unburned substances and excess air.

BURNER ACCESSORIES

Nozzles

T

₿

The nozzles must be ordered separately. The following table shows the features and codes on the basis of the maximum required fuel output.

Noz	Nozzles type B3 - SA 45°					
Burner	Rated delivery (*) (kg/h)	Nozzle code				
GI/EMME 1400	70	3009713				
GI/EMME 1400	80	3009715				
GI/EMME 1400	90	3009717				
GI/EMME 1400 - 2000	100	3009720				
GI/EMME 1400 - 2000	125	3009723				
GI/EMME 2000 - 3000	150	3009726				
GI/EMME 2000 - 3000	175	3009729				
GI/EMME 2000 - 3000 - 4500	200	3009732				
GI/EMME 3000 - 4500	225	3009735				
GI/EMME 3000 - 4500	250	3009738				
GI/EMME 3000 - 4500	275	3009741				
GI/EMME 3000 - 4500	300	3009744				
GI/EMME 4500	325	3009747				
GI/EMME 4500	350	3009750				
GI/EMME 4500	375	3009753				
GI/EMME 4500	400	3009756				

(*) Nozzle rated delivery is referred to atomised pressure.

Spacer kit

If burner head penetration into the combustion chamber needs reducing, varying thickness spacers are available, as given in the following list:

	Spacer kit	
Burner	Spacer thickness S (mm)	Kit code
GI/EMME 1400 - 2000	110	3000722
GI/EMME 3000 - 4500	130	3000751

Sound proofing box

If noise emission needs reducing even further, sound-proofing boxes are available, as given in the following table:

Sound proofing box					
Burner	Box type	Box code			
GI/EMME 1400 - 2000	C7	3010048			
GI/EMME 3000 - 4500	C8	3010049			

Accessories for modulating operation

To obtain modulating setting, the GI/EMME series of burners requires a regulator with three point outlet controls. The relative temperature or pressure probes fitted to the regulator must be chosen on the basis of the application.

The following table lists the accessories for modulating setting with their application range.

Burner	Regulator type	Code
GI/EMME 1400 - 2000 - 3000 - 4500	RWF 40	3010211

▼

Probe type	Range (°C) (bar)	Probe code
Temperature PT 100	-100 ÷ 500°C	3010110
Pressure 4 ÷ 20 mA	0 ÷ 2,5 bar	3010213
Pressure 4 ÷ 20 mA	0 ÷ 16 bar	3010214

Depending on the servomotor fitted to the burner, a three-pole potentiometer (1000 Ω) can be installed to check the position of the servomotor. The KITS available for the various burners are listed below.

Burner	Potentiometer kit code
GI/EMME 1400 - 2000 - 3000 - 4500	3010021

LPG kit

For burning LPG gas, a special kit is available to be fitted to the combustion head on the burner, as given in the following table:

LPG kit					
Burner	Kit code for standard head	Kit code for extended head			
GI/EMME 1400 - 2000	3010063	3010063			

GAS TRAIN ACCESSORIES

Y

Ē

When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner. The following table lists the adapters for various burners.

Adapters					
Burner	Gas train	Dimensions	Adapter code		
GI/EMME 1400	CBF 65/1	DN 65 2"1/2 2" 2"1/2 2"	3000825		
	CBF 80/1	DN 80 2"1/2 2"	3000826		
	MBD 420 CB 50/1	DN 80 DN 65 DN 2"1/2 2"	3010128		
GI/EMME 2000	CBF 65/1	DN 65	3000831		
	CBF 80/1	DN 80	3000832		
	CBF 100/1	DN 100	3010127		
	CBF 65/1	DN 65	3000831		
GI/EMME 3000	CBF 80/1	DN 80	3000832		
	CBF 100/1	DN 100	3010127		
	CBF 65/1	DN 65	3000831		
GI/EMME 4500	CBF 80/1	DN 80	3000832		
	CBF 100/1	DN 100	3010127		

Stabiliser spring

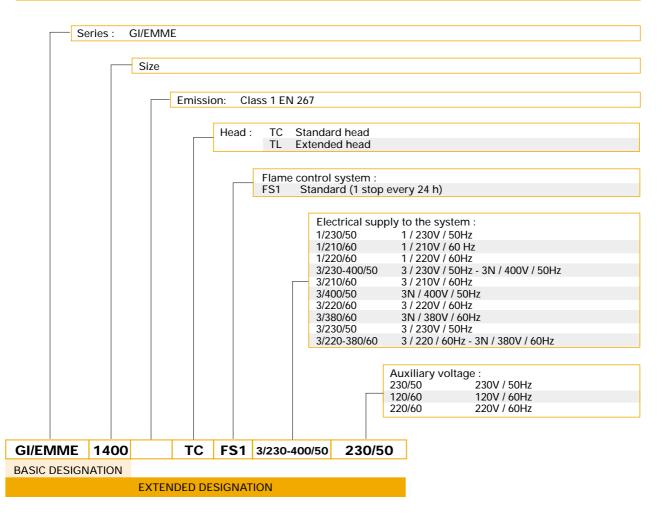
Accessory springs are available to vary the pressure range of the gas train stabilisers. The following table shows these accessories with their application range.

0	
0	
0	
0	
0)
0	
~	
2	
\leq	
8	

Stabiliser spring					
Gas train	Spring	Spring code			
CBF 65/1 - CBF 80/1	Red from 25 to 55 mbar	3010133			
CBF 100/1	Red from 25 to 55 mbar	3010134			
CBF 65/1 - CBF 80/1	Black from 60 to 110 mbar	3010135			
CBF 100/1	Black from 60 to 110 mbar	3010136			
CBF 65/1 - CBF 80/1	Pink from 90 to 150 mbar	3090456			
CBF 100/1	Pink from 90 to 150 mbar	3090489			

Seal control kit

To test the valve seals on the gas train, a special "seal control kit" is available. The valve seal control device is compulsory (EN 676) on gas trains to burners with a maximum output over 1200 kW. The seal control is type VPS 504.


Seal control kit				
Burner	Gas train	Kit code		
GI/EMME 1400	MBD 420 - CB 50/1 -	3010125		
	CBF 65/1 - CBF 80/1			
GI/EMME 2000	MBD 420 - CB 50/1 -	3010125		
	CBF 65/1 - CBF 80/1- CBF 100/1			
GI/EMME 3000	CBF 65/1 - CBF 80/1- CBF 100/1	3010125		
GI/EMME 4500	CBF 65/1 - CBF 80/1- CBF 100/1	3010125		

SPECIFICATION

A specific index guides your choice of burner from the various models available in the GI/EMME series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES

 \mathbf{T}

B

AVAILABLE BURNER MODELS

GI/EMME	1400 TC	FS1	3/220-380/60	220/60
GI/EMME	1400 TC	FS1	3/230-400/50	230/50
GI/EMME	1400 TL	FS1	3/220-380/60	220/60
GI/EMME	1400 TL	FS1	3/230-400/50	230/50
GI/EMME	2000 TC	FS1	3/220-380/60	220/60
GI/EMME	2000 TC	FS1	3/230-400/50	230/50
GI/EMME	2000 TC	FS1	3/400/50	230/50
GI/EMME	2000 TL	FS1	3/220-380/60	220/60
GI/EMME	2000 TL	FS1	3/230-400/50	230/50
GI/EMME	2000 TL	FS1	3/400/50	230/50
GI/EMME	3000 TC	FS1	3/220-380/60	220/60
GI/EMME	3000 TC	FS1	3/230-400/50	230/50

GI/EMME	3000 TC	FS1	3/400/50	230/50
GI/EMME	3000 TL	FS1	3/220-380/60	220/60
GI/EMME	3000 TL	FS1	3/230-400/50	230/50
GI/EMME	3000 TL	FS1	3/400/50	230/50
GI/EMME	4500 TC	FS1	3/220/60	220/60
GI/EMME	4500 TC	FS1	3/230/50	230/50
GI/EMME	4500 TC	FS1	3/380/60	220/60
GI/EMME	4500 TC	FS1	3/400/50	230/50
GI/EMME	4500 TL	FS1	3/220/60	220/60
GI/EMME	4500 TL	FS1	3/230/50	230/50
GI/EMME	4500 TL	FS1	3/380/60	220/60
GI/EMME	4500 TL	FS1	3/400/50	230/50

Other versions are available on request.

PRODUCT SPECIFICATION

Burner

Monoblock forced draught dual fuel burner, two stage progressive or modulating operation with a kit, made up of: - Air suction circuit

- Fan with forward curved blades
- Air damper for setting and butterfly valve for regulating fuel output controlled by a servomotor
 Combustion head, that can be set on the basis of required output
- Maximum gas pressure switch
- Minimum air pressure switch
- Fan electrical motor
- Pump electrical motor
- Gears pump for high pressure fuel supply, fitted with:
 - filter
 - pressure regulator
 - connections for installing a pressure gauge and a a vacuometer
 - internal by-pass for sinige pipe installation
- Valve unit with a double oil safety valve on the output circuit and safety valve on the return circuit
- UV photocell for flame detection
- Flame inspection window
- Slide bars for easier installation and maintenance
- Protection filter against radio interference
- IP 40 protection level.

Gas train

Fuel supply line, in the MULTIBLOC configuration (from a diameter of 3/4" until a diameter 2") or COMPOSED configuration (from a diameter of DN 65 until a diameter of DN 100), fitted with:

- Filter
- Stabiliser
- Minimum gas pressure switch
- Safety valve
- Valve seal control (for output > 1200 kW)
- One stage working valve with ignition gas output regulator.

Conforming to:

- 90/396/EEC directive (gas)
 89/336/EEC directive (electromagnetic compatibility)
 73/23/EEC directive (low voltage)
 EN 247 (limited first branches)
- EN 267 (liquid fuel burners)
- EN 676 (gas fuel burners).

Standard equipment:

- 1 flange (for GI/EMME 1400)
- 1 gas train gasket
- 8 screws for fixing the burner flange to the boiler (for GI/EMME 1400)
- 12 screws for fixing the burner flange to the boiler
- 1 insulating screen
- 2 flexible hoses for connection to the oil supply circuit
- 2 nipples for connection to the pump
- 4 wiring looms fittings for electrical connections
- 2 pin extensions - 8 washers (for GI/EMME 1400)
- 12 washers
- Instruction handbook for installation, use and maintenance
- Spare parts catalogue

Available accessories to be ordered separately:

- Return nozzles
- Head length reduction kit
 Sound proofing box
- RWF 40 output regulator
 Pressure probe 0-2,5 bar
 Pressure probe 0-16 bar
- Temperature probe -100-500°C
- Potentiometer kit for the servomotor
- Kit for transformation to LPG
- Gas train adapter
- Stabiliser spring
- Seal control kit.

Lineagrafica

RIELLO s.p.a. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

MODULATING DUAL FUEL BURNERS

CE

MB	6 LSE	1186	÷	6000	kW
MB	8 LSE	1500	÷	8000	kW
MB	10 LSE	2000	÷	10000	kW
	MB MB	MB 6 LSE MB 8 LSE	MB 6 LSE 1186 MB 8 LSE 1500	MB 6 LSE 1186 ÷ MB 8 LSE 1500 ÷	MB 4 LSE 1070 ÷ 4070 MB 6 LSE 1186 ÷ 6000 MB 8 LSE 1500 ÷ 8000 MB 10 LSE 2000 ÷ 10000

The MODUBLOC MB LSE series of burners are characterised by a monoblock structure that means all necessary components can be combined in a single unit, making installation easier and faster. The series covers a firing range from 1070 to 10000 kW, and they have been designed for use in hot water boilers or industrial steam generators.

Adjustment is modulating, through an innovative electronic module, which gives control of the air/fuel ratio and PID control of the generator temperature or pressure.

The mechanisms of regulation allow to catch up a high modulation ratio on all firing rates range.

The burner can, therefore, supply with precision the demanded power, guaranteeing a high efficiency system level and the stability setting, obtaining fuel consumption and operating costs reduction.

An exclusive design, with fan unit fitted on line with the combustion head, guarantees low sound emissions, reduced dimensions, easy use and maintenance.

E

TECHNICAL DATA

	Model			▼ MB 4 LSE	▼ MB 6 LSE	▼ MB 8 LSE	▼ MB 10 LSE	
	Setting type			modulating				
	Modulating ratio	at max. output			5 ÷	1		
	Servomotor	type			MM 1	0004		
	Scivemeter	run time	S	-	-			
	Heat output		kW	1070/2325÷4070	1186/3558÷6000	1500/4500÷8000	2000/6000÷10000	
	nour output		Mcal/h	920/2000÷3500	1020/3060÷5160	1290/3870÷6880	1720/5160÷8600	
	Working temperature °C min./max.				0/4	10		
		Net calorific value	kWh/kg		11	,8		
	Light oil	Viscosity at 20°C	mm²/s (cSt)		4 ÷	6		
	9	Capacity	kg/h	90/196÷343	100/300÷506	126/379÷675	169/506÷843	
		Max temperature	°C		50)		
	Pump	Туре		TA	5 C	VBI	HR G	
	p	Capacity	kg/h	1000 (2	25 bar)		30 bar)	
	Atomised pressu	re	bar		2!	5		
dat		Net calorific value	kWh/Nm ³		10			
air	G20	Density	kg/Nm³		0,7			
Fuel / air data		Gas output	Nm³/h	107/233÷407	119/356÷600	150/450÷800	200/600÷1000	
Ľ.	Net calorific value		kWh/Nm ³		8,			
	G25	Density	kg/Nm³		0,7			
		Gas output	Nm³/h	124/270÷473	138/414÷698	174/523÷930	233/698÷1163	
		Net calorific value	kWh/Nm ³		25			
	LPG	Density	kg/Nm ³		2,0			
		Gas output	Nm³/h	41,5/90÷158	46/138÷233	58/174÷310	78/233÷388	
	FantypeAir temperaturemax °C				Reverse cu			
				60				
	Electrical supply		Ph/Hz/V	3N/50/230-400~(±10%)				
	Auxiliary electric	al supply	Ph/Hz/V	1/50/230				
e	Control box		type	LFL 1.333				
dat	Total electrical po		kW	15 17 27,4				
Electrical data	Auxiliary electric	al power	kW	0,55				
Ĭ	Protection level		IP	40			2	
Elec	Fan electric moto	-	kW					
-	Rated fan motor Fan motor start o		A A	38 - 22	46,7 - 27 7,6 x I nom	67,5 - 39		
	Fan motor protect		IP	7,3 x I nom 7,6 x I nom 7,9 x I nom 55				
	Pump electric mo		kW	1,5 3			2	
	Rated pump mot	-	A	6,4 - 3,7		11.4 - 6.6		
	Pump motor star		A	5 x I nom		7 x I nom		
	Pump motor prot		IP	0.71	55			
	rump motor pro-		V1 - V2		230V - 2			
	Ignition transform	ner	11 - 12		2,3A -			
	Operation		2	Intermittent (at least or	ne stop every 24 h) or Con		least one stop every 72 h)	
	Sound pressure		dBA	82	85	-	8	
	Sound output		W					
s	•	CO emissions	mg/kWh		< 1	5	1	
io		Grade of smoke indicator	N° Bach.		<	1		
Emissions	Light oil	CxHy emission	mg/kWh		< 10 (after	first 20s)		
Ē		NOx emissions	mg/kWh		< 2			
	0.00	CO emissions	mg/kWh		< 1	5		
	G20	NOx emissions	mg/kWh		< 1	50		
val	Directive			73/23 - 89/336 - 98/37 - 90/396 EEC				
Approval	According to			EN 267 - EN 676				
Ap	Certifications			CE 0085AU2360 -	DIN 5G033/99 M	in progress (Cl	E DIN n°)	

Reference conditions:

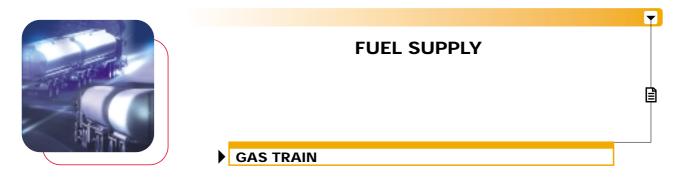
Temperature: 20°C Pressure: 1013.5 mbar Altitude: 100 meters a.s.l. Noise measured at a distance of 1 meter.

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

Y

B

Useful rate for the choice of the burner

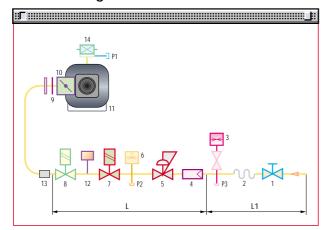

Modulating rate

Firing rates in progress

Test conditions conforming to EN 267 - EN 676: Temperature: 20°C Pressure: 1013.5 mbar

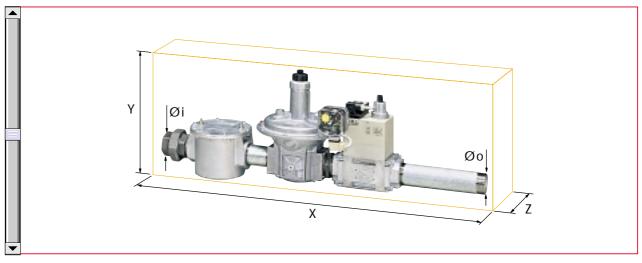
Altitude: 100 meters a.s.l.

The burners are fitted with a butterfly valve to regulate the fuel, controlled by the main management module of burner through a high precision servomotor


precision servomotor. Fuel can be supplied either from the right or left sides, on the basis of the application requirements. A maximum gas pressure switch stops the burner in case of excess pressure in the fuel line. The gas train can be selected to best fit system

The gas train can be selected to best fit system requirements depending on the fuel output and pressure in the supply line.

pressure in the supply line. The gas trains are "Composed" type (assembly of the single components).

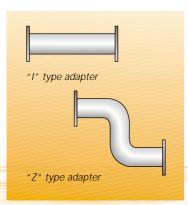

Example of the MB LSE fuel supply circuit

1	Manual valve
2	Anti-vibration joint
3	Pressure gauge with pushbutton cock
4	Filter
5	Pressure regulator (vertical)
6	Minimum gas pressure switch
7	VS safety solenoid (vertical)
8	VR regulation solenoid (vertical)
	Two settings: - firing output (rapid opening) - maximum output (slow opening)
9	Gasket and flange supplied with the burner
10	Gas adjustment butterfly valve
11	Burner
12	Seal control mechanism for valves 8-9. According to standard EN 676, the seal control is compulsory for burners with maximum output above 1200 kW
13	Gas train-burner adapter
14	Maximum gas pressure switch
P1	Combustion head pressure
P2	Pressure downstream from the regulator
P3	Pressure upstream from the filter
L	Gas train supplied separately, with the code given in the table
L1	Installer's responsibility

COMPOSED gas train with seal control

Example of gas train "COMPOSED" type without seal control

▼

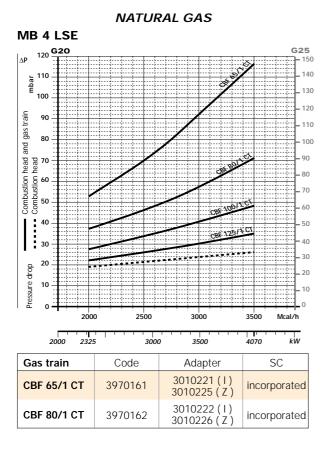

Gas trains are approved by standard EN 676 together with the burner.

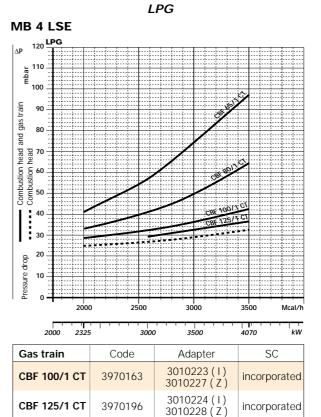
The overall dimensions of the gas train depends on how they are constructed. The following table shows the maximum dimensions of the gas trains that can be fitted to MB LSE burners, intake and outlet diameters and seal control if fitted.

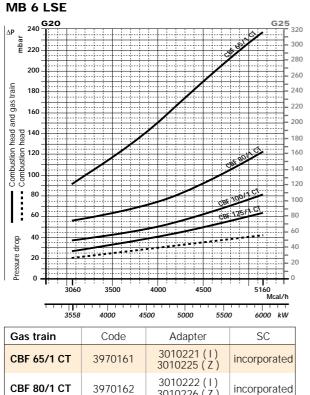
Please note that the seal control can be installed as an accessory, if not already installed on the gas train.

The maximum gas pressure of gas train "Composed" type is 500 mbar.

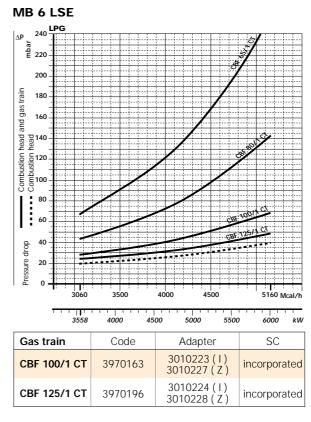
	Name	Code	Øi	Øо	X mm	Y mm	Z mm	СТ
S ED	CBF 65/1 CT	3970161	DN 65	DN 65	874	356	285	incorporated
OMPOSED GAS TRAINS	CBF 80/1 CT	3970162	DN 80	DN 80	934	416	285	incorporated
MP	CBF 100/1 CT	3970163	DN 100	DN 100	1054	501	350	incorporated
0g	CBF 125/1 CT	3970196	DN 125	DN 125	1166	686	400	incorporated


When the diameter of the gas train is different from the set diameter of the burners, an adapter must be fitted between the gas train and the burner.

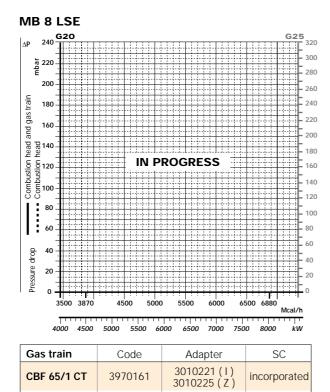

For further information see paragraph "Accessories".



PRESSURE DROP DIAGRAMS


The diagrams indicate the minimum pressure drop of the burners with the various gas trains that can be matched with them; at the value of these pressure drop add the combustion chamber pressure. The value thus calculated represents the minimum required input pressure to the gas train.

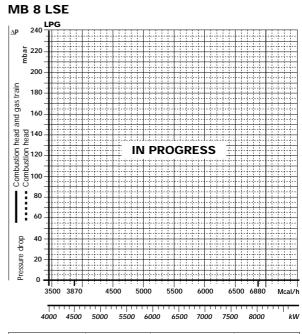
3010226 (Z)



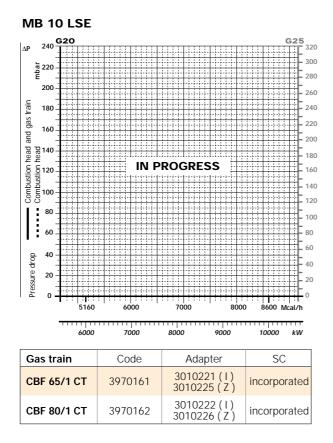
▼

CBF 80/1 CT

3970162


NATURAL GAS

3010222(1)


3010226 (Z)

incorporated

LPG

Gas train	Code	Adapter	SC
CBF 100/1 CT	3970163	3010223(I) 3010227(Z)	incorporated
CBF 125/1 CT	3970196	3010224(I) 3010228(Z)	incorporated

MB 10 LSE 240 **LPG** ΔP nbar 750 mbar 200 rain 180 gas 160 and Combustion head Combustion head Combustion head ----------IN PROGRESS -----..... ŝ 80 ł 60 I 40 Pressure drop 20 0 8600 5160 6000 8000 7000 Mcal/h 6000 7000 8000 9000 10000 kW Gas train Code Adapter SC 3010223(1) CBF 100/1 CT 3970163 incorporated 3010227 (Ž) 3010224(I) 3010228(Z) CBF 125/1 CT 3970196 incorporated

note Please contact the Riello Burner Technical Office for different pressure levels from those above indicated.

SELECTING THE FUEL SUPPLY LINES

The following diagram enables pressure drop in a pre-existing gas line to be calculated and to select the correct gas train.

The diagram can also be used to select a new gas line when fuel output and pipe length are known. The pipe diameter is selected on the basis of the desired pressure drop. The diagram uses methane gas as reference; if another gas is used, conversion coefficient and a simple formula (on the diagram) transform the gas output to a methane equivalent (refer to figure A). Please note that the gas train dimensions must take into account the back pressure of the combustion chamber during operations.

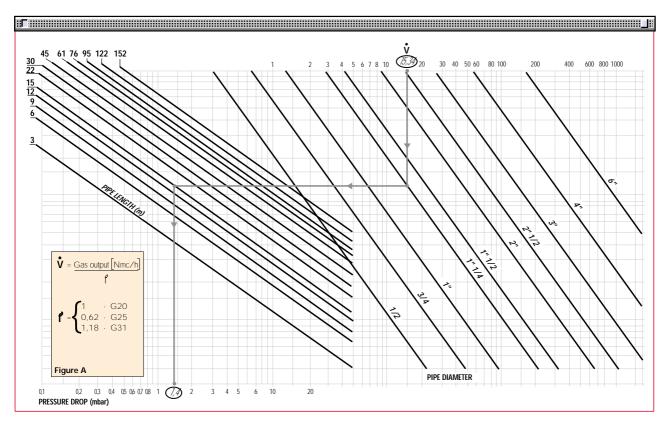
Control of the pressure drop in an existing gas line or selecting a new gas supply line. The methane output equivalent is determined by the formula fig. A on the diagram and the conversion coefficient.

Once the equivalent output has been determined on the delivery scale (\mathbf{V}), shown at the top of the diagram, move vertically downwards until you cross the line that represents the pipe diameter; at this point, move horizontally to the left until you meet the line that represents the pipe length.

Once this point is established you can verify, by moving vertically downwards, the pipe pressure drop of on the botton scale below (mbar).

By subtracting this value from the pressure measured on the gas meter, the correct pressure value will be found for the choice of gas train.

Example:	- gas used		G25
-	- gas output		9.51 mc/h
	- pressure at the gas r	neter	20 mbar
	- gas line length - conversion coefficier	nt	15 m 0.62 (see figure
- equivalent	t methane output $\mathbf{\dot{V}}$ =	<u>9.51</u> 0.62	= 15.34 mc/h


- once the value of 15.34 has been identified on the output scale (\dot{v}), moving vertically downwards you cross the line that represents 1" 1/4 (the chosen diameter for the piping);

A)

 from this point, move horizontally to the left until you meet the line that represents the length of 15 m of the piping;

- move vertically downwards to determine a value of 1.4 mbar in the pressure drop botton scale;

- subtract the determined pressure drop from the meter pressure, the correct pressure level will be found for the choice of gas train;
- correct pressure = (20-1.4) = 18.6 mbar

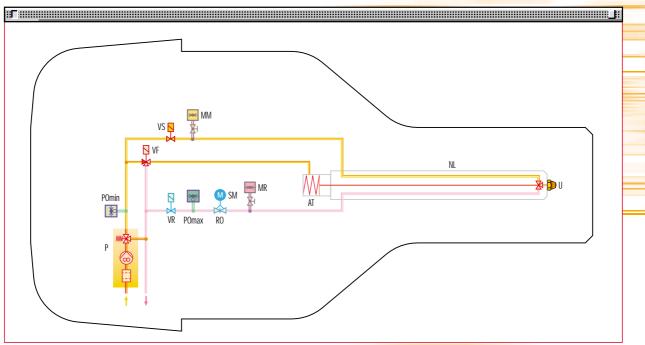
HYDRAULIC CIRCUIT

The hydraulic circuit of the MB series of burners is characterised by a fuel pump with an independent motor.

The burners have two safety valves for the light oil, one on the delivery circuit and one on the return circuit; the use of a nozzle with shut-off needle gives even further safety.

A three way value is associated to the actuator for opening and closing the nozzle needle, and a servo-driven pressure variator on the return circuit gives utmost precision to the amount of fuel burnt.

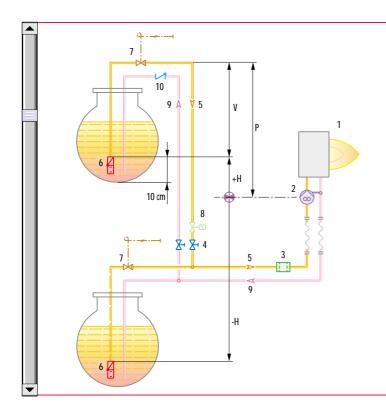
A minimum pressure switch on the oil delivery line means that the burners are suitable, from a hydraulic point of view, for use in steam generators that correspond to TRD 604 (Germany), NBN (Belgium) standards.


For further information on MB burners series versions with "continuous operation" contact Riello Burners Technical Office.

Р	Pump with filter and pressure regulator			
PO min	Min. oil pressure switch on the delivery circuit			
VF	3 way operating valve			
VS	Safety valve on the delivery circuit			
MM	Pressure gauge on the delivery circuit			
NL	Nozzle pipe			
U	Nozzle			
AT	Actuator for opening and closing the nozzle needle			
MR	Pressure gauge on the return circuit			
SM	Servomotor			
RO	Pressure regulator on the return circuit			
PO max	Max. oil pressure switch on the return circuit			
VR	Safety valve on the return circuit			

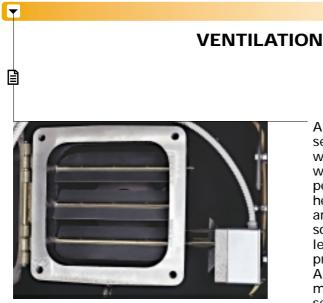
Example of the MB LSE fuel supply circuit

EN 267 > 100 Kg/h (TRD 604, NBN)


-

DIMENSIONING OF THE FUEL SUPPLY LINES

The fuel feed must be completed with the safety devices required by the local norms.

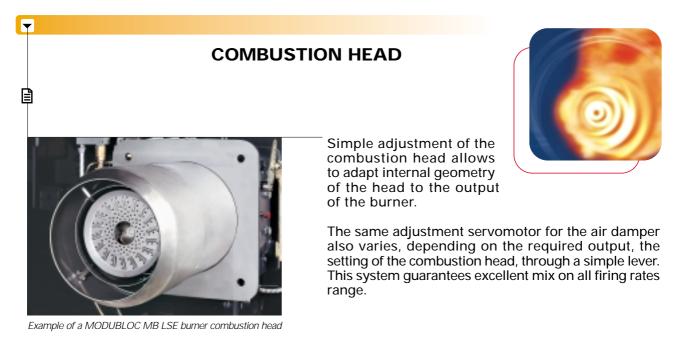

The table shows the choice of piping diameter for the various burners, depending on the difference in height between the burner and the tank and their distance.

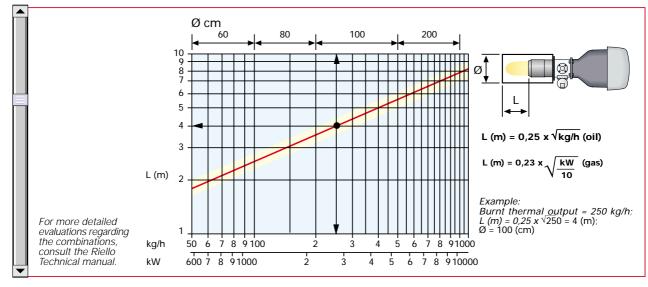
MAXIMUM EQUIVALENT LENGTH FOR THE PIPING L[m]							
Model	▼MB 4 LSE		▼ MB 6 LSE		▼ MB 8 LSE	▼ MB 10 LSE	
Piping diameter	G 3/4″	G1″	G 3/4″	G1″			
+H, -H (m)	L _{max} (m)	L _{max} (m)	L _{max} (m)	L _{max} (m)			
+4,0	-	-	-	-	-	-	
+3,0	-	-	-	-	-	-	
+2,0	55	130	55	130	-	-	
+1,5	50	120	50	120	-	-	
+1,0	45	110	45	110	-	-	
+0,5	40	100	40	100	-	-	
0	35	90	35	90	-	-	
-0,5	30	80	30	80	-	-	
-1,0	25	70	25	70	-	-	
-1,5	20	60	20	60	-	-	
-2,0	15	45	15	45	-	-	
-3,0	10	25	10	25	-	-	
-4,0	-	-	-	-	-	-	

Н	Difference in height pump-foot valve			
Ø	Internal pipe diameter			
Ρ	Height ≤ 10 m			
V	Height ≤ 4 m			
1	Burner			
2	Burner pump			
3	Filter			
4	Manual shut off valve			
5	Suction pipework			
6	Bottom valve			
7	Remote controlled rapid manual shutoff valve (compulsory in Italy)			
8	Type approved shut off solenoid (compulsory in Italy)			
9	Return pipework			
10	Check valve			

▶ note With ring distribution oil systems, the feasible drawings and dimensioning are the responsibility of specialised engineering studios, who must check compatibility with the requirements and features of each single installation.

Example of the servomotor and dampers for air setting


All the burners in the MB series are fitted with fans with reverse curve blades, which give excellent



performance and are fitted in line with the combustion head. The air flow and sound-deadening materials that are used in the construction are designed to reduce sound emissions to the minimum and guarantee high levels of performance in terms of output and air pressure.

A high precision servomotor, through the main management module installed on each burner of MB series, controls the air dampers position constantly, guaranteeing an optimal fuel-air mix.

On request, the Modubloc burners can be supplied with the "inverter" configuration, which means they are fitted with a device for varying the amount of combustion air through a variable speed action of the fan motor. The addition of the interface inverter module means the burner can work at reduced speed, with further benefits in terms of sound emissions, especially during the night when the perception threshold is lower.

Dimensions of the combustion chambers used in the testing laboratory

SETTING

OUTPUT SETTING

Each MB series burner has a main electronic microprocessor management panel, which controls both the fuel flow servomotor (with a pressure regulator) and air flow servomotor (with air dampers).

Hysteresis is prevented by the precise control of the two servomotors and the software link.

The high precision regulation is due to the absence of mechanical clearance normally found in mechanical regulation cams on traditional modulating burners.

Inside each MB series burner main electronic microprocessor management panel, there is a PID regulator to control the boiler temperature or pressure . Variables can be controlled by specific accessory probes (see paragraph "Accessories).

The burner can run for a long time on intermediate output settings (see fig. A)

The main electronic management panel shows all operational parameters in real time, so as to keep a constant check on the burner:

- servomotor angle
- required set-point and actual set-point
- fuel consumption (measured indirectly)
- smoke and environmental temperature (with EGA module)
- CO₂, CO, O₂, NO e SO₂ value (with EGA module)

- burner stage

The main electronic management panel operations can be increased by installing accessory modules as illustrated below. For available module codes see "Accessories".

Special software can be loaded into a portable PC to input and download data through an interface cable to an infrared device on the front panel of the MB series burner.

This is useful both during burner start-up and commissioning phases, and maintenance.

D.T.I. Module

D.T.I. module (Data Transfer interface)

This electronic module can transfer multiple signals from different local modules to a BMS supervisor software system (Building Management System).

Examples of local modules:

- main management module on each MB series burner which sends and receives signals to indicate or modify the burner working stage
- modules which send and receive signals from the various devices in the boiler room and system.
 - e.g. analog modules I/O
 - digital modules /O
 - EGA modules

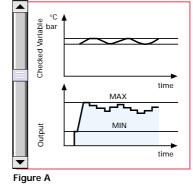
(For further information see relative paragraph)

Up to ten MB series burners, with or without the EGA module, ten analog modules I/O and ten digital modules I/O can be linked up.

The DTI module uses MODUBUS interface protocol as a standard protocol to external supervisory systems (a type of field bus widely used in industrial communication systems).

This type of protocol is used when sample signal rates which need checking are low e.g. for temperature, pressure or pump and fan systems.

With special electronic interface boards other communication protocols (e.g. PROFIBUS) can be used.



•

B

Main management module

"Modulating" setting

DTI module information is transferred directly or by modem to supervisory systems by RS 232 or RS 422 (in the case of long distance up to 1 km) connections.

The supervisory system can also manage a series of MB burners installed in the same system; each main electronic management panel comes with the software needed to manage such a series of burners.

Digital I/O Module

Analogic I/O Module

Digital I/O Module

Digital modules I/O transfer in-coming and out-going information such as working stages and alarms, from the boiler room or from the system in general where one or more MB series burners are installed to a remote supervisor system.

Digital modules I/O manage both input and output signals, e.g.:

- n. 16 input signals (free contacts max. current 1 A)
- n. 8 output signals (free contacts max. current 1 A)

The out-going signals can control any device in the boiler room, e.g. pumps, fans, etc...

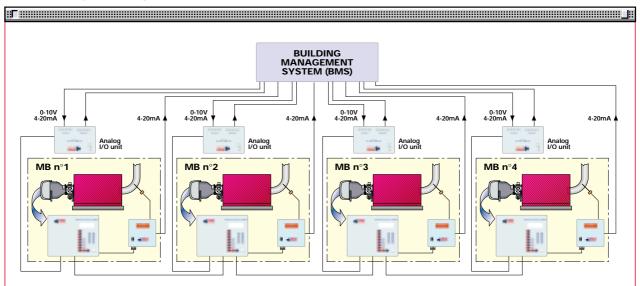
The in-coming signals can check any device in the boiler room, e.g. pumps, fans, etc... and receive warning signals such as over heating, excess pressure.

Up to ten I/O digital modules can be linked together. Fig. C shows an example of sequencing I/O digital modules linked to a remote supervisor system by a DTI interface.

Analog I/O module

I/O Analog modules transfer in-coming and out-going information about burner working stages and other devices in the boiler room or in the system in general where one or more MB series burners are installed to a remote supervisor system.

I/O Analog modules manage both input and output signals, such as 4-20 mA or 0-10 Volt, e.g.: - n. 6 input signals


- n. 6 output signals

These modules can be connected to the remote supervisor system in two different ways:

- "LOW LEVEL" connection

each I/O analog module transmits information from a single burner to a remote supervisor system using 4-20 mA or 0-10 Volt signals, e.g. boiler temperature/pressure, output level, boiler set-point, servomotor angle position, etc. The system becomes operational when each single

I/O analog module is programmed by a portable PC and appropriate software. The set point can be modified by a single in-coming 4–20 mA or 0-10 Volt signal from the supervisor system.

Here is an example of a "LOW LEVEL" connection between I/O analogue modules and remote supervisor system. (figure B)

Figure B - "LOW LEVEL" connection

RIELO

- "HIGH LEVEL" connection

each I/O analog module transmits in-coming and out-going information about boiler room temperature/pressure, pump rpm, set point, to a remote supervisor system using 4-20 mA or 0-10 Volt signals, through DTI interface.

Up to ten I/0 digital modules can be linked together.

Here is an example of an "HIGH LEVEL" connection between I/O analogue modules and remote supervisor system. (figure C)

Figure C - "HIGH LEVEL" connection

E.G.A. Module

E.G.A. module (Exhaust Gas Analyser)

EGA modules measure some of the exhaust gas substances. These modules come with an exhaust gas sampler probe and exhaust gas temperature probe (0-400 $^{\circ}$ C).

Four different EGA modules are available depending on the type of substance to be checked. (For further information see "accessories" paragraph).

Thanks to EGA module connected to the main electronic microprocessor management panel on each MB series burner, the burner can adjust its working parameters on the basis of continuous combustion gas analysis. The EGA module creates a closed control link which increases efficiency by up to max 5%.

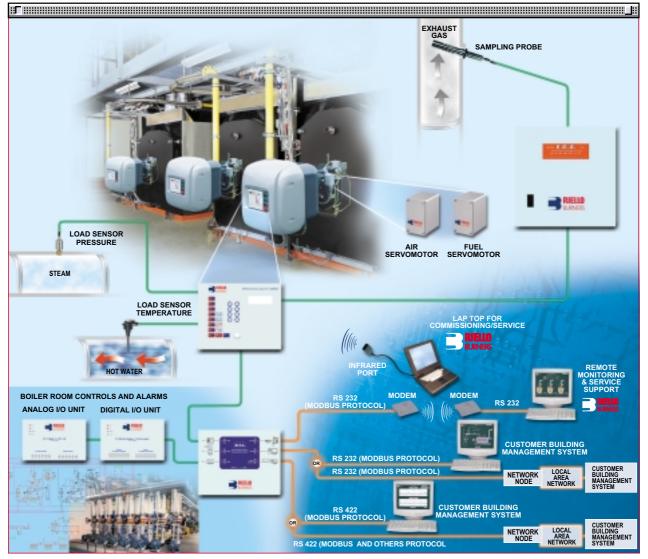
The following functions are also available:

- smoke and environmental temperature measurement

- viewing of measured parameters on main management display panel
- burner lock-out when some parameters exceed permitted levels (settable)
- combustion optimisation with automatic air damper setting (adjustment O₂ level)
- automatic re-adjustment at each firing

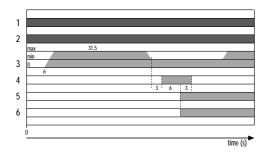
The information from EGA modules can be sent to a remote supervisor system in two ways:

- through six signals (4-20mA) on a terminal board (see layout fig. B)
 To activate this operation each single EGA module must be programmed using a PC with appropriate software.
- through the DTI interface module (see layout fig. C)


Connections between Modules

A data cable type BELDEN 9501 or similar, which can be ordered as an accessory (see accessories paragraph), must be used to connect the above modules.

The following diagram summarises how MB series burners and modules can be used for the supervision of boiler rooms or systems in general.

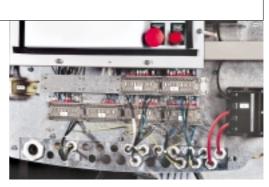


Example of boiler room management system

IGNITION

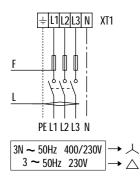
▼

MB 4-6-8-10 LSE


- 1 Closing thermostat
- 2 Fan motor working
- 3 Air damper
- 4 Ignition transformer
- 5 Valves open
- 6 Flame presence

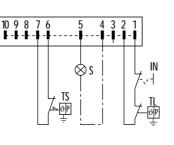
ELECTRICAL CONNECTIONS To be made by the installer

Electrical connections must be made by qualified and skilled personnel, according to the local norms.



Y

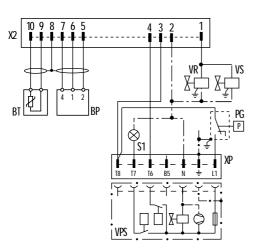
Ē


Example of the terminal board for electrical connections

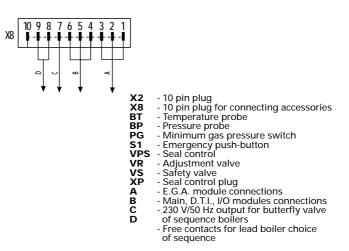
THREE PHASE SUPPLY TO THE POWER CIRCUIT AND CONNECTING THE AUXILIARY CONTROLS

MB 4-6-8-10 LSE

X1

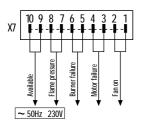


XT1 - General supply terminal board General supply terminal
 10 pin plug
 Safety thermostat
 Threshold thermostat
 Manual switch
 External lock-out signal
 Fuse (refer to table A)
 Lond costing (refer to table A)


- X1 TS TL IN S F

 - Lead section (refer to table A)

CONNECTION OF THE PROBES FOR THE CONTROLLED PARAMETER AND **DATA CONNECTION FOR THE VARIOUS MODULES (Accessories)**



MB 4-6-8-10 LSE

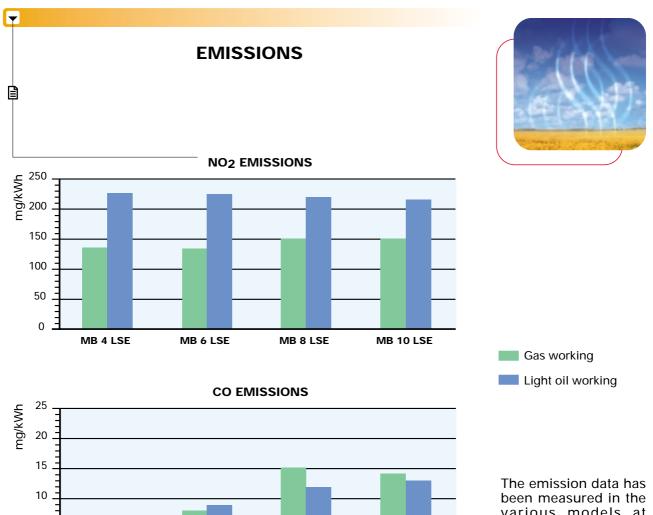
SIGNALS FOR WORKING STATUS OF THE MAIN COMPONENTS

MB 4-6-8-10 LSE

5

0

MB 4 LSE

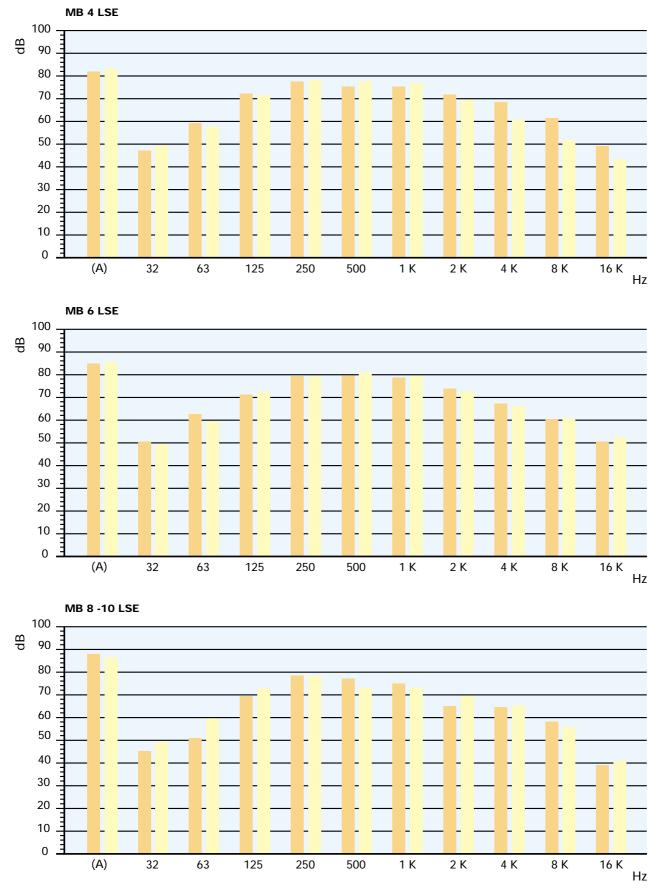

MB 6 LSE

SL	X8	00 00	X7	00 00	Х6	00 00	X5	
	X1	00 00	X2	00 00	X3	00 00	X4	

X7 - 10 pin output plug, free contacts
 SL - Layout plug diagram
 X3,4,5,6 - Plugs for electrical factory-set connections

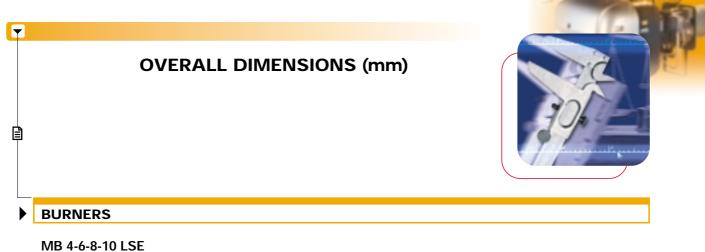
The following table shows the supply lead sections and the type of fuse to be used.

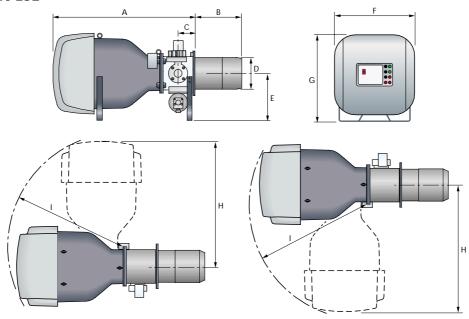
Model		▼ MB	4 LSE	▼ MB	6 LSE	E 🔻 MB 8 LS		▼ MB 10 LSE	
		230V	400V	230V	400V	230V	400V	230V	400V
F	А	63 gG	50 gG	63 gG	50 gG	80 gG	63 gG	80 gG	63 gG
L	mm ²	6	4	6	4	10	10	10	10
able A									


MB 8 LSE

MB 10 LSE

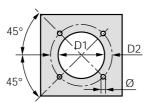
been measured in the various models at maximum output, according to EN 676 and EN 267 standard.

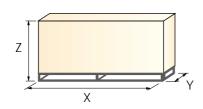

SOUND EMISSIONS



(A) Value obtained in dB(A)

Maximum modulation


Minimal modulation


Model	A	В	С	D	Е	F	G	Н	Ι
MB 4 LSE	1470	511	183	336	490	840	910	1330	1205
MB 6 LSE	1470	511	183	336	490	840	910	1330	1205
MB 8 LSE	1900	530	208	413	575	1007	1079	1740	1570
MB 10 LSE	1900	530	208	413	575	1007	1079	1740	1570

BURNER - BOILER MOUNTING FLANGE

Model	D1	D2	Ø
► MB 4 LSE	350	496	M20
► MB 6 LSE	350	496	M20
MB 8 LSE	418	608	M20
MB 10 LSE	418	608	M20

PACKAGING

Model	Х	Y	Z	kg
► MB 4 LSE	2120	1005	1175	300
► MB 6 LSE	2120	1005	1175	300
MB 8 LSE	2590	1170	1350	450
▶ MB 10 LSE	2590	1170	1350	450

INSTALLATION DESCRIPTION

Installation, start up and maintenance must be carried out by qualified and skilled personnel. All operations must be performed in accordance with the technical handbook supplied with the burner.

Access to the internal components is very simple, as the back of the burner is hinged which means it can be completely opened.

The burners can be supplied with the opening on the right or left, depending on personal requirements.

FIXING THE BURNER TO THE BOILER AND INITIAL SETTINGS

- ▶ All the burners have lifting rings, for easier installation and maintenance.
- After drilling the boilerplate, using the supplied gasket as template, prepare a suitable lifting system and, after hooking onto the rings, fix burner to the boiler.
- Install the nozzle and the gas train, choosing it on the basis of the maximum boiler output and on the basis of the diagrams enclosed with the burner instructions.
- Adjust the combustion head run, using the mechanism lever.

ELECTRICAL AND HYDRAULIC CONNECTIONS AND START UP

- The burner are supplied for connection to two pipes fuel supply system.
- Connect the ends of the flexible pipes to the suction and return pipework using the supplied nipples.
- Make the electrical connections to the burner following the wiring diagrams included in the instruction handbook.
- Prime the pump, by turning the motor (check rotation direction corresponds with the arrow printed on the pump motor cover and that the led signalling correct rotation direction, at left of the plugs group, is on).
- Adjust the gas train for first start.
- ▶ On start up, check:
 - Pressure at the pump, the regulator and the valve unit (to max. and min.)
 - Gas pressure at the combustion head (to max. and min. output)
 - Combustion quality, in terms of unburned substances and excess air.

Ţ

B

This electronic module can transfer multiple signals from different local modules to a BMS supervisor software system (Building Management System).

		DTI module	
1000	Burner		Module code
	MB 4 - 6 - 8 - 10 LSE		3010234

I/O digital module

Digital modules I/O transfer in-coming and out-going information such as working stages and alarms, from the boiler room or from the system in general where one or more MB series burners are installed to a remote supervisor system.

I/O digital module				
Burner	Module code			
MB 4 - 6 - 8 - 10 LSE	3010233			

I/O analogic module

I/O Analog modules transfer in-coming and out-going information about burner working stages and other devices in the boiler room or in the system in general where one or more MB series burners are installed to a remote supervisor system.

I/O Analog modules manage both input and output signals, such as 4-20 mA or 0-10 Volt.

	I/O analogic m	nodule
- 1999.	Burner	Module code
HATH OF THE O	MB 4 - 6 - 8 - 10 LSE	3010232

EGA module (Exhaust Gas analyser)

EGA modules measure some of the exhaust gas substances. These modules come with an exhaust gas sampler probe and exhaust gas temperature probe (0-400 °C).

Four different EGA modules are available depending on the type of substance to be checked, as given in the following table:

EGA module				
Burner	Analysed gas	Module code		
MB 4 - 6 - 8 - 10 LSE	CO, CO ₂ , O ₂	3010235		
MB 4 - 6 - 8 - 10 LSE	CO, CO ₂ , O ₂ , NO	3010236		
MB 4 - 6 - 8 - 10 LSE	CO, CO ₂ , O ₂ , SO ₂	3010237		
MB 4 - 6 - 8 - 10 LSE	CO, CO ₂ , O ₂ , NO, SO ₂	3010238		

Belden 9501 type leads

All the connections for the above modules must be done using a BELDEN 9501 type lead, which is available as an accessory in coils of 50 m.

Belden 9501 lead				
Burner	Lead code			
MB 4 - 6 - 8 - 10 LSE	3010239			

Accessories for modulating setting

Main management module allows a modulating setting with use of probes chosen on the basis of the application. The following table lists the accessories for modulating setting, with the application field.

Probe					
Burner	Туре	Range (°C) (bar)	Code		
MB 4 - 6 - 8 - 10 LSE	Temperature	0 ÷ 400°C	3010187		
MB 4 - 6 - 8 - 10 LSE	Pressure	0 ÷ 3 bar	3010246		
MB 4 - 6 - 8 - 10 LSE	Pressure	0 ÷ 18 bar	3010186		
MB 4 - 6 - 8 - 10 LSE	Pressure	0 ÷ 30 bar	3010188		

Return nozzles with needle cut-off

The nozzles must be ordered separately. The following table shows the features and codes, on the basis of maximum fuel output that is required.

		Nozzles	B5 45°		
Burner	Rated output kg/h	Nozzle code	Burner	Rated output kg/h	Nozzle code
MB 4 LSE	200	3009800		525	3009813
	225	3009801		550	3009814
	250	3009802	MB 8 LSE	575	3009815
IVID 4 LJL	275	3009803		600	3009816
	300	3009804		650	3009817
	325	3009805		700	3009818
	350	3009806		400	3009808
	375	3009807		425	3009809
	400	3009808		450	3009810
MB 6 LSE	425	3009809		475	3009811
	450	3009810		500	3009812
	475	3009811		525	3009813
	500	3009812	MB 10 LSE	550	3009814
	300	3009804		575	3009815
	325	3009805	_	600	3009816
	350	3009806	_	650	3009817
MB 8 LSE	375	3009807	_	700	3009818
	400	3009808		750	3009819
	425	3009809		800	3009820
	450	3009810	_	850	3009821
	475	3009811	_	900	3009822

Kit for transformation to LPG

For burning LPG gas, a special kit is available to be fitted to the combustion head of the burner, as given in the following table:

3009812

500

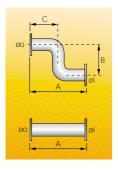
LPG transformation kit								
Burner	Kit code							
MB 4 LSE	3010189							
MB 6 LSE	3010190							
MB 8 LSE	In progress							
MB 10 LSE	In progress							

Burner support

For easier maintenance, a mobile burner support has been designed, which means the burner can be dismantled without the need for forklift trucks.

Support								
Burner	Support code							
MB 4 - 6 LSE	In progress							
MB 8 - 10 LSE	In progress							

GAS TRAIN ACCESSORIES


T

B

Adapters

In certain cases, an adapter must be fitted between the gas train and the burner, when the diameter of the gas train is different from the set diameter of the burner.

Below are given the adapters than can be fitted on the various burners:

Adapters									
Burner	Gas train				mensi	Adapter code			
	uan	type	Øi DN	Øo DN	A mm	B mm	C mm	code	
MB 4-6-8-10 LSE	CBF 65/1 CT	I	65	80	320			3010221	
MB 4-6-8-10 LSE	CBF 80/1 CT	I	80	80	320			3010222	
MB 4-6-8-10 LSE	CBF 100/1 CT	- I	100	80	320			3010223	
MB 4-6-8-10 LSE	CBF 125/1 CT	-	125	80	320			3010224	
MB 4-6-8-10 LSE	CBF 65/1 CT	Ζ	65	80	400	480	225	3010225	
MB 4-6-8-10 LSE	CBF 80/1 CT	Ζ	80	80	400	480	225	3010226	
MB 4-6-8-10 LSE	CBF 100/1 CT	Z	100	80	400	480	225	3010227	
MB 4-6-8-10 LSE	CBF 125/1 CT	Z	125	80	500	480	300	3010228	

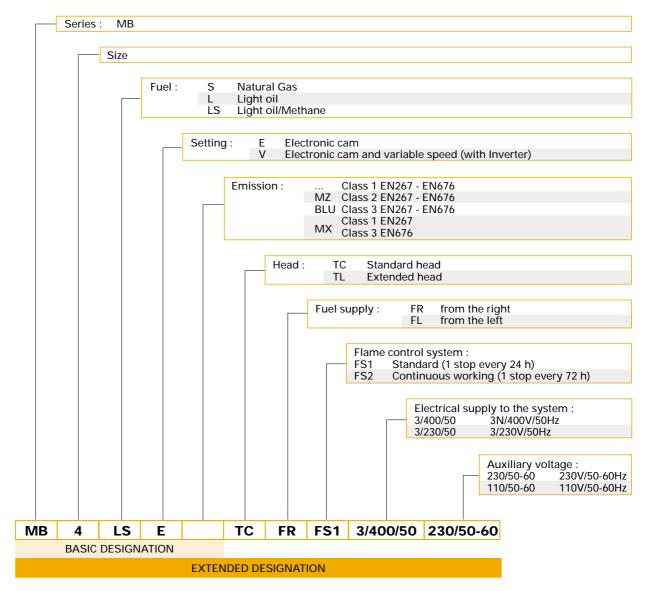
Stabiliser spring

To vary the pressure range of the gas train stabilisers, accessory springs are available. The following table shows these accessories with their application range:

Stabiliser spring										
Gas train	Spring	Code								
CBF 65/1 CT - 80/1 CT	Red from 25 to 55 mbar	3010133								
CBF 100/1 CT	Red from 25 to 55 mbar	3010134								
CBF 125/1 CT	Red from 25 to 55 mbar	being prepared								
CBF 65/1 CT - 80/1 CT	Black from 60 to 110 mbar	3010135								
CBF 100/1 CT	Black from 60 to 110 mbar	3010136								
CBF 125/1 CT	Black from 60 to 110 mbar	being prepared								
CBF 65/1 CT - 80/1 CT	Pink from 90 to 150 mbar	3090456								
CBF 100/1 CT	Pink from 90 to 150 mbar	3090489								
CBF 125/1 CT	Pink from 90 to 150 mbar	being prepared								

Please refer to the technical manual for the correct choice of spring.

SPECIFICATION


A specific index guides your choice of burner from the various models available in the MODUBLOC MB series. Below is a clear and detailed specification description of the product.

DESIGNATION OF SERIES MODUBLOC MB BURNERS

Ŧ

₿

LIST OF AVAILABLE MODELS

MB4LSE	TC	FR	FS1	3/400/50	230/50-60	MB8LSE	TC	FR	FS1	3/400/50	230/50-60
MB4LSE	TC	FR	FS1	3/230/50	230/50-60	MB8LSE	TC	FR	FS1	3/230/50	230/50-60
MB4LSE	TC	FL	FS1	3/400/50	230/50-60	MB8LSE	TC	FL	FS1	3/400/50	230/50-60
MB4LSE	TC	FL	FS1	3/230/50	230/50-60	MB8LSE	TC	FL	FS1	3/230/50	230/50-60
MB6LSE	TC	FR	FS1	3/400/50	230/50-60	MB10LSE	TC	FR	FS1	3/400/50	230/50-60
MB6LSE	TC	FR	FS1	3/230/50	230/50-60	MB10LSE	TC	FR	FS1	3/230/50	230/50-60
MB6LSE	TC	FL	FS1	3/400/50	230/50-60	MB10LSE	TC	FL	FS1	3/400/50	230/50-60
MB6LSE	TC	FL	FS1	3/230/50	230/50-60	MB10LSE	TC	FL	FS1	3/230/50	230/50-60

Other versions are available on request.

PRODUCT SPECIFICATION

Burner:

Monoblock forced draught oil and gas burner with modulating setting, fully automatic, made up of: - fan with reverse curve blades high performance with low sound emissions

- air suction circuit lined with sound-proofing material
- air damper for air setting controlled by a high precision servomotor
- air pressure switch
- fan starting motor at 2900 rpm, three-phase 230/400 400/690 V with neutral, 50Hz
- pump starting motor at 2900 rpm, three phase 230/400 V 50Hz
- mobile combustion head, that can be set on the basis of required output, fitted with:
 - stainless steel end cone, resistant to corrosion and high temperatures
 - ignition electrodes
 - flame stability disk
- gears pump for high pressure fuel supply, fitted with:
 - filter
 - pressure regulator
 - connections for installing a pressure gauge and vacuum meter
 - internal by pass for single pipe installation
- valve unit containing:
 - oil safety valve on the delivery circuit
 - oil safety valve on the return circuit
 - three way valve for the actuator
- actuator for opening and closing the nozzle needle
- automatic setting for light oil delivery, controlled by a high precision servomotor
- safety oil pressure switch for stop the burner in the case of problems in the return circuit
- pressure gauge for delivery pressure
- pressure gauge for return pressure
- minimum oil pressure switch on the delivery circuit (TRD 604, NBN standards)
- automatic setting for gas delivery, controlled by a high precision servomotor
- maximum gas pressure switch, with pressure test point, for halting the burner in the case of over pressure on the fuel supply line
- module for air/fuel setting and output modulation with incorporated PID control of temperature or pressure of the heat generator
- flame control panel for controlling the system safety
- photocell for flame detection
- star/triangle starter for the fan motor
- pump motor starter
- burner on/off switch
- auxiliary voltage led signal
- manual or automatic output increase/decrease switch
- burner working led signal
- contacts motor and thermal relay with release button
- motor failure led signal
- burner failure led signal and lighted release button
- led signal for correct rotation direction of fan and pump motor
- emergency button
- coded connection plugs-sockets
- burner opening hinge
- lifting rings
- IP 40 electric protection level.

According to:

- 89/336/CEE directive (electromagnetic compatibility)
- 73/23/CEE directive (low voltage)
- 98/37/EEC directive (machinery)
- 90/396/EEC directive (gas)
- EN 267 (liquid fuel burners).
- EN 676 (gas burners).

Standard equipment:

- 2 flexible pipes for connection to the oil supply network
- 2 gaskets for the flexible pipes
- 2 nipples for connection to the pump
- 1 flange gasket

▼

- 8 screws for fixing the flange
- 4 screws for fixing the burner flange to the boiler
- 1 thermal screen
- instruction handbook for installation, use and maintenance
- spare parts catalogue.

Available accessories to be ordered separately:

- DTI module (Data Transfer Interface)
- I/O digital module
- I/O analogic module
- EGA module (Exhaust Gas Analyser) in the following versions:
 - EGA CO, CO₂, O₂
 - EGA CO, CO₂, O₂, NO
 - EGA CO, CO₂, O₂, SO₂
 - EGA CO, CO₂, O₂, NO, SO₂
- BELDEN 9501 type lead
- Pressure probe 0 ÷ 3 bar
- Pressure probe 0 ÷ 18 bar
- Pressure probe 0 ÷ 30 bar
- Temperature probe 0 ÷ 400°C
- Return nozzles with needle cut-off
- Kit for transformation to LPG
 Burner support
- Adapters
- Stabiliser spring.

Lineagrafica

RIELLO s.p.a. - Via degli Alpini, 1 - 37045 LEGNAGO (VR) Italy Tel. ++39.0442630111 - Fax ++39.044221980

Internet: http://www.rielloburners.com - E-mail: rburners@rielloburners.com

Since the Company is constantly engaged in the production improvement, the aesthetic and dimensional features, the technical data, the equipment and the accessories can be changed. This document contains confidential and proprietary information of RIELLO S.p.A. Unless authorised, this information shall not be divulged, nor duplicated in whole or in part.

